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What Complex
Networks ?

Databases:

o KONE.CT Database, http://konect.uni-koblenz.de/n
e SNAP Database, :

http://snap.stanford.edu/data
e VLADO database, http://viado.fmf.uni-lj.si/pub/networks/

divided in 4 groups...


http://konect.uni-koblenz.de/networks
http://snap.stanford.edu/data

Social Networks

We collected:
e 5 Social networks with geographic check-
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checking book).




Biological Networks .......cu

simonsfoundation.org/
We collected: o ¥

e 2 Carbon exchanges.

e 43 Cellular (substract in cellular
networks).
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Edges are'ustc
directed!

Metabolic processes: Hierarchical
modularity of nested bow-tlesin
metabolic networks, Zhao et al
2010



Technological Networks

Autonomous Systems
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Information Networks

2 Citation (nodes represent papers, edges
represent citations).
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Total number of
Complex Networks
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Graph Topological
Features?



every other node in G:
is solated. then ecefu)

Topological Features

For a n«

ntrality (pr)
f closed walks of all lengths startix
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ar
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Degree (deg): For a node. it is defined as the nmumber

of its neighboring edges. It can be formally defined
using the adjacency matrir: deg( =Y v Quu- In
real-world networks, the average degree often follows

a power law (scale-free networks).

Pagerank (pr): Computes a ranking of the nodes in
the graph G based on the structure of the incoming
links. de:

It was originally gned as an algorithm to

rank web pag
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But...

Features are
size-dependent!

Need to normalize
each graph!



Sampling Methods

SS: N=4

flickrEdaes.txt0 VECTOR_SAMPLED.dat

* Two typeS: Size: 1191
o Snowball Sampling (SS). MHRW: n = 1000 Assortativity: -0.117

flickrEdaes.txt0 VECTOR_SAMPLED.dat x Degree: 0.01478

o MEtrOpOliS'HaSting Size: 1580 Coreness: 9.0

Num Triangles: 0.0

Random Walk Sampling Assortativity: 0.096 Num_Cliques: 1191
Degree: 0.00132 Clustering: 0.0
(MHRW). Cz%:enesstz 0.0 =

Number Triangles: 0.0 o
Number Cliques: 1580

Clustering: 0.0

* Approacheso - Snowball is bad!
[ ]
2 o e e o o e e e o o e e o o e e o o e e e o o e e o o e e o o o e e ok but...
O Graph Ol'derS: n= 500, E%;igi;_}A.ﬂi;:'lgr'EdgesAt-ﬁ;tO_VECTOR_SAMPLED.da1 some properties
Closen(: Gi-gp-
1000, 1500, 2000, 3000, 2R e VT
E{zgi; Assortativity: 0.144 defined in any
- 1
5000. é;%?% Degree: 0.00041 method!
: -2 Coreness: 26.0 Gt
= 40326903 , 2 . 906405786, 974235701,
© Depth N _3' 4 1026836 :iiitﬁﬁii-—é{igﬁi’?biegégs 7501, 95694358, 2569309971

9948757¢ lo, 78877051, 90701979,
32148330 o 59, 407213467, 494605748,
4774435 Clustering: 0.0 53, 95230597, 50502379,

81845325 il . 18, 86597213, 818782080]

The entire network: Pagerank
Example, the ouare.

T e Nodes: 106722 Sduare_g —
onine . | o Edges(size):2316668 |y ey
communication ~ Clustering: 0.001 oseness: 0.
o

sh e 4 3 3 34 e 34 e 4 ke 3 o e 3 e e e e o e o e e o e ok

network:

Assortativity: 0.144



Train Set Results - SVM Test Set Results - SVM

"1-vs-the-rest", Gauss
“1-vs-the-rest", Gauss. 1-vs-the-rest" i "1-vs-the-rest”, Gauss

"1-against-1", xn 1-against-1", xmin

Accuracy

"1-vs-the-rest", Gauss

o
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1-against-17, ur

@-@ N=500

-8 N=1000
©=0 N=1500 -0 N=1500
o=@ N=2000 o-® N=2000
@-@ N=5000 @@ N=5000
w4 All together w4 All together




Cross Validation socal clasife

Cross-Validation for INFO network - SVM - "1-against-all" - 80/20 Cross-Validation for BIO network - SVM - "1-against-all" - 80/20 Cross-Validation for SOCIAL network - SYM\'1-against-all" - 80/20
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Cross-Validation for TECH network - SVM - "1-against-all" - 80/20

100 Sets bio and tech
200 Sets

300 Sets | classify worse

Smaller Samples Classify worse!

Number of Sets

We use to select good C (penalty
parameter of the error term) and
gamma (kernel coefficient.

i
0.7
Accuracy




Outline

e The classification seems to work:

ccccccc

e Ifyou are interested: astro.sunysb.edu/steinkirch/new/mlo
o More plots and results for:

Samplings

Cross-validation

Feature Selection: which of the 23 are really i

Some unsupervised learning

e You can try yourself with:
m my results: astro.sunysb.edu/steinkirch/new

m my code: github.com/mariwahl/ML

Thank you!



