
Introduction to the Microsoft Kinect for

Computational Photography and Vision

Marina von Steinkirch, steinkirch@gmail.com

State University of New York at Stony Brook

May 9, 2013

Abstract

We introduce the depth sensor Microsoft Kinect and
show how to start its use for developing applications
on Linux. We discuss the options for frameworks and
drivers and show an (original) installation tutorial
on Fedora. Finally, we explain the calibration and
we introduce tools to manipulate the depth data using
point clouds.

Introducing the Kinect

Microsoft released the Kinect for Xbox 360 input-
device in November of 2010, as the first large-scale,
commercial release of a depth camera device(a
camera that can see in 3D!). A very similar sensor,
now specific for developing, the Kinect for Windows,
was released in February of 2012. These sensor come
with a proprietary algorithms for feature selection,
scene analysis, motion tracking, skeletal track-
ing, and gesture recognition [1]. In addition, the
company that developed the, the PrimeSense Ltd.
[2], has also released another sensor with the similar
technology, the ASUS Xtion [3].

Depth Sensing

The depth sensing works with the principle of struc-
tured light1. The system consists of two parts, the

1Process of projecting a known pattern of pixels on to a
scene looking to the way they deform when meeting surfaces,
which allows vision systems to calculate the depth and surface
information of the objects.

Figure 1: The Kinect hardware (Xbox model).

IR laser emitter and the IR camera. The emitter
creates a known noisy pattern of structure IR light at
830 nm [4]. The output of the emitter has a pattern
of nine bright dots, caused by the imperfect filtering
of light2. The dots are recorded by the IR camera
and then compared to a know pattern, where any
disturbances are to be the variations in the surface,
detected as closer or further away. The field of view i
s 58o horizontal and 45o vertical, and the operational
range is between 0.8 to 3.5 meters. The sensor has
roughly 1 cm depth (z) resolution.

Color pixels are made of different amounts of red,
green, and blue, while greyscale images are a sin-
gle value representing brightness of that pixel. The
Kinect provides a color image from its RGB camera
and grey-scale image from its depth camera. Both
images have a resolution of 640x480 and both cam-
eras operates at a (max) of 30 fps.

2This scattering innovation, allowing a higher powered laser
diode to be used and being eye safe was developed by Prime-
Sense, which has a patent on this process.

1

Available Framework and Drivers

Up to the date, there are two platforms for the Kinect
sensor available for Linux 3:

OpenNI (Open Natural Interaction) [6]:

A middleware delivered from a collaboration
of PrimeSense to develop “natural interaction”
software and devices. It has skeletal tracking
and gesture recognition. However, the OpenNI’s
features on user tracking (in which an algorithm
processes the depth image to determine the po-
sition of all of the joints of any users within the
camera’s range) is not covered by the OpenNI
LGPL license. Instead, it is provided by an ex-
ternal module, called NITE which is not avail-
able under an open source license.

OpenKinect [7]:

This driver is known by its library name
libfreenect and was the first Kinect driver avail-
able for general use and is fully open-source (dual
Apache 2.0/GPL 2.0 license), cross-platform,
and derived purely from reverse-engineering ef-
forts. libfreenect implements low-level access to
the hardware by directly communicating with
the Kinect’s USB endpoints.

The OpenKinect driver was chosen for this project
based upon its simple software interface, low-level
hardware access, cross-platform support, and support
for multiple languages. In addition, libfreenect has
the ability to retrieve uncalibrated depth images from
the Kinect, for the depth calibration.

Installing the Kinect

Hardware Requirement

All you need to install the Kinect to your computer is
a USB 2.0 hub (Kinect will take 70% of it to transmit
data), a graphic card capable of handing OpenGL,
and a machine that can handle 20MB/second of data.
An additional power supply is needed for the Kinect
Xbox 360 [4].

3The Microsoft SDK is only available for Windows [1].

Installing the OpenKinect on Fedora
1. Install all the dependences (yum install...):

• git-core, cmake, gcc, gcc++.

• freeglut, freeglut-devel (library provided with
Mesa for creating windows containing OpenGL con-
texts).

• pkg-config (tool used when compiling applications
and libraries).

• libXmu, libXmu-devel (X Window System library).

• libXi, libXi-devel (X Window System client inter-
face to the XINPUT extension to the X protocol).

• libusb1, libusb1-devel (library that gives applica-
tions access to USB devices).

2. Create the files ”51-kinect.rules” and ”66-kinect.rules” in
/etc/udev/rules.d/ (see git repository [8]).

3. Do git clone https://github.com/OpenKinect/libfreenect.git
and then, inside the mkdir build dolder,do cmake .., make,
and make install.

4. sudo ldconfig /usr/local/lib64/, to create the links and
cache to the shared libraries to the destination.

5. sudo adduser [YourUserName] video, to add yourself to the
video sudoers list.

6. Finally, test: sudo glview or ./bin/glview. This should show
the RGB camera capture and an attempt at fitting the color
camera to the 3D space.

Libraries: OpenCV and PCL

OpenCV (Open Source Computer Vision) [9]:
Pre-built library of real-time computer vision
functions developed by Intel in the 90s. The
library has over 500 functions in different areas
of vision and image analysis including: gesture
recognition, facial recognition, motion tracking,
and 3D vision. It’s the base of my cameras’
calibration.

PCL (the Point Cloud Library) [10] PCL
handles data acquired from many modern visual
sensors. The scene is created by points, and
each point contains a position in space (x,y,z)
and optional RGB color or gray-scale. Point
clouds create a three dimensional picture and
PCL merges point-clouds together, filtering out
uninteresting data points, identifying key points
in a scene, and sorting data into tree-hierarchies.

A bridge between the OpenKinect driver and
PCL is in my git repo [8].

2

Calibration

Figure 2: My calibration board. (top) Here we see the
process with the IR emitter blocked, with the corners.
(bottom) calibration process for the IR image.

Without calibration, the color and depth outputs
from the cameras are useless data. The camera’s in-
trinsic and extrinsic parameters are factory set and
it is necessary to determine a translation from the
camera frame to the world frame. The intrinsic pa-
rameters are: focal length, camera sensor size, lens
distortion measured as a radial distortion, and image
plane displacement measured as displacement from
the optical axis. In the other hand, the extrinsic pa-
rameters are the camera location (vector) and the
camera rotation (as Euler angles). The cameras are
calibrated using the pinhole model, where the view of
the scene is created by projecting a set of 3D points
onto the image plane via perspective transformation.

We can create a depth annotation of a chessboard
rig by physically offsetting the chessboard from its
background. The offset creates sharp edges in depth
along the perimeter of the chessboard mounting
which remain fixed with respect to the chessboard’s
interior corners. By coinciding the chess- board’s ex-
terior corners with the sharp edges in depth, there is
no need to measure the positioning of the chessboard
with respect to the mounting; only the dimension of
a single chessboard square is needed.

The calibration steps for the IR and the RGB cam-
eras we proceed as follow:

1. I created a calibration target: a chessboard
printed on a4.pdf, where each square is 0.023
m2, as in Fig. 2.

2. I took 20 with the IR emitter blocked (for the
stereo camera calibration) and 20 with none of
the cameras blocked, making sure the corners of
the target are always in the image and getting
different angles and placements.

3. I run a code written with the OpenCV cal-
ibration functions (see git repo [8]) for the
above images, aiming a pixel reprojection er-
ror smaller than 1. The OpenCV library con-
tains built-in support for locating the interior
corners of a chess-board calibration rig (e.g.
findChessboardCorners). The set of pairings
between raw depth values and object depths ob-
tained this way does the calibration of raw depth
values to meters.

4. In the last step, I generated a yml calibration file,
that can be used in applications (e.g. OpenCV).
Opening the viewer with this file I see the cali-
brated image: not distorted at the edges and the
distances are accurate (Fig. 3). The calibration
file contain:

rgb-intrinsics and depth-intrinsics:
the camera’s intrinsic parameters in pixel
units, a matrix with the principle point
(usually the image center), cx,y and the
focal length, f1,2

Figure 3: Depth image results from the cameras cali-
bration (left) me in my desk in a uncalibrated camera
and (right) much happier and calibrated after.

rgb-distortion and depth-distortion:
lenses also have some distortion (radial,
k1,2,3, and tangential, P1,2).

3

R and T: the translation and rotation of the
projected point from the world into a coor-
dinate frame in reference to the camera.

Figure 4: (top) The camera intrinsic matrix and the
combined R-T matrix, (bottom) the pinhole model
and stereo calibration [4].

2D and 3D Data

A first analysis of the depth data is treating it as if
it were two-dimensional. For each pixel in the depth
image, we think of its position within the image as
its (x,y) coordinates plus a grayscale value. This
last value corresponds to the depth of the image in
front of it, e.g. this value will represent the pixel’s z-
coordinate. The depth map returns a flat array that
contains 307,200 (or 640 times 480) integers arranged
in a single linear stack, Fig. 6.

Figure 5: Transformations between 2D and 3D data.

Once we convert all the two-dimensional grayscale
pixels into three-dimensional points in space, we have
a point cloud, i.e. many disconnected points floating
near each other in three-dimensional space in a way
that corresponds to the arrangement of the objects
and people in front of the Kinect, Fig. 7.

Figure 6: Depth data as a flat array.

Figure 7: Depth data with point clouds.

Outline and Next Steps

This paper intended to be an introduction to how
to set and calibrate the Microsoft Kinect for Linux,
namely in the Fedora distribution. The described
framework allows the development of many applica-
tions (and powerful!) on computer photography and
computer vision. My project results, which is beyond
the scope of this paper, explore some and can be ac-
quired from the git repository [8].

References
[1] http://www.microsoft.com/en-us/kinectforwindows/

[2] http://www.primesense.com/

[3] http://www.asus.com/Multimedia/Xtion PRO/

[4] Hacking the Kinect, Apress, 2012

[5] Making Things See, 2012

[6] http://www.openni.org/

[7] http://openkinect.org

[8] https://bitbucket.org/steinkich/kinect-hacks-and-projects

[9] http://opencv.org/

[10] http://pointclouds.org/

4

