CSE 512 Machine Learning: Homework 1

Department of Computer Science
Stony Brook University

There are 6 questions on this assignment. The last question involves coding. Do not attach your code
to the writeup. Instead, zip all your source files, and upload the .zip file on Blackboard. Name your
.zip file with your SBU name, e.g. leman.zip

e The assignment is due at 5:30 PM (beginning of class) on Tue, Feb 25, 2014.

Do not forget to put both your name and SBU ID on each page of your submission.

If you have any questions, please direct your question first to the TA, then the instructor.

1 Machine Learning - Problem Setup [10 points|

In online debate forums, people debate issues, express their preferences, and argue why their viewpoint is
right. For example, a debate can be “which mobile phone is better: iPhone or Blackberry,” or “which OS is
better: Windows vs. Linux vs. Mac?” Given a debate forum, machine learning can be applied to:

a. Detect the hot debate topics. (Hint: a debate topic is one on which there exist many discussions, with
both positive and negative opinions.)

b. For each topic, identify the points of contention within the debate.

c. For a given topic, recognize which stance a person is taking in an online debate posting.

For each of the tasks above: (1) Specify what type of machine learning problem it is (supervised or unsu-
pervised; and regression, classification, or density estimation, etc). (2) Identify what will be () the training
data, (i) the features, (iéi) the labels (if any), (iv) and what would be the algorithm output. Note that there
exist multiple possible answers for this question, depending on how you formulate the problem set up.

2 Probability [10 points]

2.1 Conditional Probability and the Chain Rule [3 points]

Recall the definition of a conditional probability:

P(ANB)
P(B)
1. Prove that P(ANBNC) = P(A|B,C)P(B|C)P(C)

P(A|B) =

2.2 Total Probability [7 points]

Suppose that I have two six-sided dice, one is fair and the other one is loaded — having;:
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I will toss a coin to decide which die to roll. If the coin flip is heads I will roll the fair die, otherwise the
loaded one. The probability that the coin flip is heads is p € (0,1).

1. What is the expectation of the die roll (in terms of p)?
2. What is the variance of the die roll (in terms of p)?

Something commonly used in statistics and machine learning are so called “mixture models” which may
be seen as a generalization of the above scenario. For some sample space we have several distributions
Pi(X), i =1...k (e.g., the two dice from above). We also have a distribution over these “components”
P(C =1) (e.g., the coin toss, where C' is a binary random variable).

1. Show the form of P(X) in terms of P;(X) and P(C).
2. Show the form of E(X) in terms of F(X|C). Make your answer as compact as possible.
3. Show the form of Var(X) in terms of Var(X|C) and E(X|C). Make your answer as compact as possible.

3 Parameter Estimation [20 points]

The Poisson distribution is a useful discrete distribution which can be used to model the number of occur-
rences of something per unit time. For example, in networking, packet arrival density is often modeled with
the Poisson distribution. That is, if we sit at a computer, count the number of packets arriving in each time
interval, say every minute, for 30 minutes, and plot the histogram of how many time intervals had X number
of packets, we expect to see something like a Poisson pmf curve.

If X (e.g. packet arrival density) is Poisson distributed, then it has pmf

AXe A

X!’
where A > 0 is the parameter of the distribution and X € {0,1,2,...} is the discrete random variable
modeling the number of events encountered per unit time.

P(X|\) =

Note: For the purposes of this problem, everything you need to know about Poisson and Gamma distributions
will be provided.

3.1 MLE and MAP estimates [10 points]

It can be shown that the parameter X is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X7, ..., X,, which we assume are drawn
ii.d from Poisson(\).

1. [3 pts] Recall that the bias of an estimator of a parameter 6 is defined to be the difference between the
expected value of the estimator and 6.

Show that A = % >; X is the maximum likelihood estimate of A and that it is unbiased (that is, show
that E[A] — A = 0). Recall that E[a + b] = E[a] + E[b] (linearity of expectations).

2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter \.
Your friend in networking hands you a typical plot showing the counts of computers at a university
cluster with different average packet arrival densities (Figure 1). Your extensive experience in statistics

tells you that the plot resembles a Gamma distribution pdf. So you believe a good prior distribution
for A may be a Gamma distribution.
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Figure 1: Just giving you some motivation. Don’t take it so seriously.

Recall that the Gamma distribution has pdf:

PN B) = AT A >0

Also, if A ~ T'(a, 3), then it has mean «/3 and the mode is (o — 1)/ for o > 1.1
Assuming that A is distributed according to I'(A|a, ), compute the posterior distribution over A.
Hint:

)\Z Xi+oc—le—)\(n+6)

looks like a Gamma distribution! Is the rest of the expression constant with respect to A7 Working
out a messy integral can lead to the answer but shouldn’t be necessary.

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of A under a I'(a, 8)
prior.

3.2 Estimator Bias/Variance [10 points]

The maximum likelihood estimator is not always unbiased. For example, the maximum likelihood estimator
for the variance of a Normal distribution,

is biased - and that an unbiased estimator of variance is:

N
1 .
O'Zunbiased = N1 E (xi - ﬂ)2
=1

For the Normal distribution, these estimators give similar results for large enough N, and it is unclear
whether one estimator is preferable to the other. In this problem, we will explore an example in which the
maximum likelihood estimate is dramatically superior to any unbiased estimator.

IT(a) refers to the Gamma function, but don’t worry if you don’t know what this is—it will not be important for this
question.



We will again be interested in the Poisson distribution, but instead of estimating the parameter \, we will
estimate a nonlinear function of A, namely n = e~2* from a single sample X ~ Poisson()\).

1. [3 pts] Let /) = e~2X. Show that 7 is the maximum likelihood estimate of 7.
2. [4 pts] Show that the bias of 7 is e=2} — M1/e’=1)
The following identity from Taylor expansion may be useful:

oo

t t"
(& :ZE

n=0

3. [3 pts] It turns out that (—1)% is the only unbiased estimate of 1. Prove that it is indeed unbiased
and briefly explain why this is a bad estimator to use. It may be instructive to plot the values of the
MLE and unbiased estimate for X =1, ..., 10.

4 Regression [20 points]

4.1 Linear Models [12 points]

Suppose that you have a software package for linear regression. The linear regression package takes as input
a vector of responses (Y') and a matrix of features (X), where the entry X; ; corresponds to the ith data
point and the jth feature for that data point and Y; is the ith response of the function. The linear regression
package returns a vector of weights w that minimizes the sum of squared residual errors. The jth entry of
the vector, w; is the weight applied to the jth feature.

For the following functions G; of the input vector C;, you should
EITHER
e specify how the response and features (Y; and X ;) are calculated for the regression software package

e specify how parameters a can be obtained from the values returned by the regression software package
w so that « is the maximum likelihood estimate

OR
e provide your reasoning for why the software can not be employed

Example. Given the function G; = Z?:o osz'i1 +e6 =oa0+oCin + agCﬁl + agOil + €; where C;
is the first component of C; and €¢; ~ N(0,0?), by setting: X;; Cil for j = {0,1,2,3} and V; + G;
for each ¢, the software package then returns w* = argmin z:l(yZ — Wo — W1Tj1 — Waki2 — ngi73)2 =
argminy_.(G; — Z?=o chg,1)2- aj < w;j then is the MLE for each «; for j = {0, 1,2, 3}.

L. [2 pts] G; = a1 CE1e%2 + ¢; where C 5 is the second component of C; and €; ~ N(0,0?).

2. 2 pts] G; = alCzleC“ + €; + ;i where ¢; ~ N(0,0%) and 7; ~ N(u,03). Here p is the unknown bias
and must be estimated.

3. [2pts] Gi = 3, @ f;(Ci) + € where f;(C;) are known basis functions calculated using the input vector
C; and ¢; ~ N(0,0?)

4. [2 pts] Gi = > ajus) fi(Ci) + €; where “%” is the modulo operator and €; ~ N(0,02?)

5. [2pts] Gy =3 ; ; f(Ci]0) +¢; where 6 is a real valued unknown parameter in the basis functions and
€ ~ N(0,0?). You need to estimate both a and 6.



6. [2 pts] €% =[] £;(Cs)*] where ; ~ logNormal(0,0?) and the range of f; is positive.?

4.2 Weighted Least Squares [8 points]

Given instances < x;,t; > generated from the linear regression model t(z) = >, w;h;(z;) + €;, the least
squares estimate for the coefficient vector w is given by w* = (HTH)"*HTt. If €, ..., ¢, are independent
Gaussian with mean 0 and constant standard deviation, the least squares estimate is also the MLE. In the
first three questions, assume that €1, ..., €, are independent Gaussian with mean 0, but the variances are
different, i.e. Variance(e;)= o7.

1. [1 pts] Give the formulation for calculating the MLE of w.
2. [2 pts] Calculate the MLE of w.

3. [2 pts] Explain why the MLE of w can also be obtained by weighted least squares, i.e. w* is obtained
by minimizing the weighted residual squared error 3, a;(t; — > ; wih; (z;))?, where a; is the weights.
Give the weights a;.

4. [2 pts] If €1, ..., €, are independent Laplace with mean 0 and the same scale parameter b, i.e., the pdf

of € is fe,(x) = iexp(—%), give the formulation for calculating the MLE for w (closed form solution

is not required).

5. [1 pts] Sometimes the model in the last question is preferred because its solution tends to be more
robust to noise. Explain why this is true.

5 Decision Trees [20 points]

5.1 ID3 and KL Divergence [7 points]

Consider the following set of training examples for the unknown target function < X, Xo >— Y. Each row
indicates the values observed, and how many times that set of values was observed. For example, (+,7T,T)
was observed 3 times, while (—,T,T) was never observed.

Y X1 X2 Count
+ T T 3
+ T F 4
+ F T 4
+ F F 1
- T 7T 0
- T F 1
- F T 3
- F F 5

Table 1: Training data

1. [2 pts] Compute the sample entropy H(Y) for this training data (with logarithms base 2)?

2. [3 pts] What are the information gains IG(X;) = H(Y) — H(Y|X1) and IG(X2) = H(Y) — H(Y|X>)
for this sample of training data?

2The log-Normal distribution is the distribution of a random variable whose logarithm is normally distributed.



3. [2 pts] Draw the decision tree that would be learned by ID3 (without postpruning) from this sample
of training data.

5.2 Information Gain and Entropy [5 points]

When we discussed learning decision trees in class, we chose the next attribute to split on by choosing the
one with maximum information gain, which was defined in terms of entropy. To further our understanding
of information gain, we will explore its connection to KL-divergence, an important concept in information
theory and machine learning. For more on these concepts, refer to Section 1.6 in Bishop.

The KL-divergence from a distribution p(x) to a distribution ¢(z) can be thought of as a measure of dissim-
ilarity from P to Q:

q()
Lipllg) = = p(e) logs T2 @)

We can define information gain as the KL-divergence from the observed joint distribution of X and Y to the
product of their observed marginals.

16(2.1) = KL Ofe ) paloo) = = 33 o) lOQz( <() Py >)

Y)

When the information gain is high, it indicates that adding a split to the decision tree will give a more
accurate model.

1. [3 pts] Show that definition of information gain above is equivalent to the one given in class. That
is, show that IG(x,y) = H[z] — H[z|y] = H[y] — H|y|z], starting from the definition in terms of
KL-divergence.

2. [2 pts] In light of this observation, how can we interpret information gain in terms of dependencies
between random variables? A brief answer will suffice.

5.3 Consistent Trees [8 points]

We know that a tree with lower complexity will tend to have better generalization properties. So one (rather
simplistic) option to help avoid overfitting is to find the simplest tree that fits the data. This follows the
principle known as Occam’s Razor. One simple way to define “simplest” is based on the depth of the tree.
Specifically, the depth is the number of nodes along the longest root-to-leaf path. For example, the tree from
part 1 would have depth 2. In this problem, we will be interested in learning the tree of least depth that fits
the data.

Suppose the training examples are n-dimensional boolean vectors, where n > 2 is some constant integer.
(For example (T, F, F,T,T) is a 5 dimensional boolean vector). We know that the ID3 decision tree learning
algorithm is guaranteed to find a decision tree consistent® with any set of (not self-contradicting) training
examples, but that doesn’t necessarily mean it will find a short tree.

1. [4 pts] For n = 3, does ID3 always find a consistent decision tree of depth < 2 if one exists? If so,
prove it. If not, provide a counterexample (a set of examples, similar to Table 1 above, but with 3
variables), with an explanation.

3A “consistent” tree is one with zero training error.



2. [4 pts] Propose your own learning algorithm that finds a shortest decision tree consistent with any set
of training examples (your algorithm can have running time exponential in the depth of the shortest
tree). Give the pseudocode and a brief explanation.

6 Naive Bayes vs Logistic Regression [20 points]

In this problem you will implement Naive Bayes and Logistic Regression, then compare their performance
on a document classification task. The data for this task is taken from the 20 Newsgroups data set*, and
is available at http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hwi-data.tar.gz. The
included README. txt describes the data set and file format.

Our Naive Bayes model will use the bag-of-words assumption. This model assumes that each word in a
document is drawn independently from a multinomial distribution over possible words. (A multinomial
distribution is a generalization of a Bernoulli distribution to multiple values.) Although this model ignores
the ordering of words in a document, it works surprisingly well for a number of tasks. We number the words
in our vocabulary from 1 to m, where m is the total number of distinct words in all of the documents.
Documents from class y are drawn from a class-specific multinomial distribution parameterized by 6,. 8, is
a vector, where 6, ; is the probability of drawing word ¢ and Y., 6, ; = 1. Therefore, the class-conditional
probability of drawing document  from our Naive Bayes model is P(X = z|Y = y) = [[/-,(6,.:)c0u0t: (@)
where count;(z) is the number of times word i appears in x.

1. [5 pts] Provide high-level descriptions of the Naive Bayes and Logistic Regression algorithms. Be sure
to describe how to estimate the model parameters and how to classify a new example.

2. [3 pts] Imagine that a certain word is never observed in the training data, but occurs in a test instance.
What will happen when our Naive Bayes classifier predicts the probability of the this test instance?
Explain why this situation is undesirable. Will logistic regression have a similar problem? Why or why
not?

Add-one smoothing is one way to avoid this problem with our Naive Bayes classifier. This technique
pretends that every word occurs one additional time in the training data, which eliminates zero counts

in the estimated parameters of the model. For a set of documents C = z?, ..., 2", the add-one smoothing
14+3°7_, count, («7)
' D+m

>y Z?Zl count;(27)). Empirically, add-one smoothing often improves classification performance

when data counts are sparse.

parameter estimate is 0, = , where D is the total number of words in C' (i.e., D =

3. [10 pts] Implement Logistic Regression and Naive Bayes. Use add-one smoothing when estimating the
parameters of your Naive Bayes classifier. For logistic regression, we found that a step size around
.0001 worked well. Train both models on the provided training data and predict the labels of the test
data. Report the training and test error of both models. Submit your code electronically on Blackboard
under SafeAssignments. You do not need to include a hard copy of your code along with your HW
submission.

4. [2 pts] Which model performs better on this task? Why do you think this is the case?

4Full version available from http://people.csail.mit.edu/jrennie/20Newsgroups/



CSE 512 Machine Learning: Homework I

Mari Wahl, marina.w4hl at gmail

1 Machine Learning - Problem Setup [10 points]

In online debate forums, people debate issues, express their preferences, and argue why their viewpoint is
right. For example, a debate can be “which mobile phone is better: iPhone or Blackberry,” or “which OS is
better: Windows vs. Linux vs. Mac?” Given a debate forum, machine learning can be applied to:

a. Detect the hot debate topics. (Hint: a debate topic is one on which there exist many discussions, with
both positive and negative opinions.)

Solutions:

Each post in the forum would be an instance of our data. They could be indexed, for example, by post
message, by author, and by time. We also add an index for the topic of the post, which would
relate groups of posts. If we are using many forums, we can also add the forum name to the data,
which would not make any difference for the items below (but could give some additional statistical
information if desired).

To be able to find the hot topics, we start by adding a grade to the opinion of the post: positive,
negative, or impartial. A hot topic is defined as a topic that has many responses which must be
either positive and negative (not impartial). These response must be by many authors (although some
authors can respond more than once, they will in general maintain the same opinion). A range of time
can also be stipulated for the valid posts (some discussions lose their validity or hotness after some
time).

1. Type of machine learning: Unsupervised learning

2. Algorithm output: The task of detecting what are the hot topics can be done with density
estimation.

b. For each topic, identify the points of contention within the debate.

Solution:

For each hot topic found in the item above, we find the points of contention by searching for the
features that are mentioned within the disagreement though the posts. For example, when debating
about phones, if one post says something positive about, for example, the camera of a model, and then
another point has a negative comment about this characteristic, this is a contention point. Each post
will be indexed by a different author.

1. Type of machine learning: Unsupervised learning.

2. Algorithm output: task of detecting what are the points of contention for the topics can be
done with density estimation.



c. For a given topic, recognize which stance a person is taking in an online debate posting.

Solution:

After the results from the previous items, we have a set of what are the point of the contentions, and
these become the features. This time we are actually using the labels in each features to be able to
recognize the stances people are taking in each post. In other words, for each post, we can find if the
opinion for these feature are positive, negative, or impartial, then for each author, we can learn what
are their stances (note that not all the features will have a corresponding value for every post, so this
should be considered in the algorithm).

1. Type of machine learning: Supervised learning.
2. Training data: Chose some posts within the hot topics, containing the points of contention.

3. Features: Characteristics such as usability, appearance, price, operational system, etc (extracted
from the points of contention).

4. Labels: Positive, negative, and impartial.

5. Algorithm output: Depending on the majority of positive or negative labels for the features,
we can define a criteria to recognize the stance of each user as positive, negative, or impartial.
For example, the simplest case would be saying that if there are more negatives than positives,
the person’s stance is negative, or if they amount the same, the person is impartial. We could
also attribute weights for the features that seems to be more relevant or more recurring.



2 Probability [10 points]

2.1 Conditional Probability and the Chain Rule [3 points]

Theoretical Introduction:

The expression P(A) denotes the probability that the event A is true, where 0 < P(A) < 1. Given two
events, A and B, we define the probability of A or B, as

| P(Aor B) = P(AU B) = P(A) + P(B) - P(A and B) = P(A) + P(B) - P(AN B).|

If A and B are events that are impossible to occur at the same time, they are called disjoints,
P(A and B) = P(ANB) =0.
In this case, the probability above reduces to:

P(Aor B) = P(AU B) = P(A) + P(B).

If A and B are not disjoints, the joint probability of the joint events A and B, also called product rule,
is given by

| P(A and B) = P(AN B) = P(A, B) = P(A)P(B|A) = P(B)P(A|B). |

If A and B are stochastically independent,
P(B|A) = P(B),
and the probability above expression reduces to:

P(A and B) = P(AN B) = P(A)P(B).

If P(B) > 0 we can define the conditional probability of event A, given that event B is true, as:

" P(A.B) _P(ANB)
PAR =)~ rm)

Given a joint distribution on two events P(A and B) = P(A, B), the marginal distribution is

P(A)= Y P(A,B)=) P(AB=b)P(B=b),
b

beIm(B)

where we are summing over all possible states of B. This is called the sum rule or the rule of total
probability.



Solution:

Let A, B, and C be random variables representing three different events'. We now are going to proof the
equality:
P(ANnBNC)=P(A|B,C)P(B|C)P(C). (1)

Let us define the random variable k = BN C'. The conditional probability for events B and C' in terms of s
is given by:
P(BNC)=P(B|CYP(C) = P(k).

Now, the conditional probability for events A and « is:
P(ANk)=PANBNC)=P(Alr)P(r),

which is just

k)P(k) = P(A|BNC)P(BNC)
— P(A|B,C)P(B|C)P(C).

Since probability multiplications are commutative (as any real-valued function in a unidimensional space),
we complete the proof of Eq. 1. [ ]

A second way to perform the same proof is by induction, using the equation for conditional probabil-
ity:
P(BNC)
P(BNnC)
P(AnBNQC)
P(BNC)
= P(BNC)P(AIBNC)
= P(C)P(B|C)P(A|B,C)

P(AnBNC) = PANBNQC) x

= P(BNC)

It is possible to generalize this result for N events. |

2.2 Total Probability [7 points]

Suppose that I have two six-sided dice, one is fair and the other one is loaded. having:

1 =
P@)=1{2 z=06
5 r€1{1,2,3,4,5}

I will toss a coin to decide which die to roll. If the coin flip is heads I will roll the fair die, otherwise the
loaded one. The probability that the coin flip is heads is p € (0,1).
1. What is the expectation of the die roll (in terms of p)?

2. What is the variance of the die roll (in terms of p)?

1A random variable is a numerical outcome of the experiment, i.e., a real-valued function whose domain is the sample
space.



Theoretical Introduction:

In a probabilistic model of an experiment, a random variable is a real-valued function of the outcome of
the experiment. In this case, we define the outcome of the coin-dice experiment by the random variable X
(i.e., it will take the possible outcomes for the dice).

A discrete random variable has an associated probability mass function (pfm), which gives the proba-
bility of each numerical value that the random variable can take. In this problem, the pfm for the fair dice
is:

1
Prair dice(z) = 57 T E {17273a4a576}'

The pfm for the loaded dice is:

1
bR 1'26
oaded\T) =
Plonded () {fo, v € {1,2,3,4,5)
The pfm for the coin is:
(0) = D, ¢ = head
i (I-p), c=tail

A function of a discrete random variable defines another discrete random variable, whose pfm can be obtained
from the pfm of the original random variables. Therefore, we have:

p><%7 if x =6 and ¢ = head
(5, ¢) (1-p)x 3, ifz=06andc=tail
in—di €, Cc) = .
Peoin=dice D X %7 if x € {1,2,3,4,5} and ¢ = head

(I1-p)x 1—10, if x € {1,2,3,4,5} and ¢ = tail

In terms of the random variable X:

+&n it =6
+ 0P i g e {1,2,3,4,5)

p
pcoin—dice(x) - {g
6

Note that

Zpooinfdice(x) =6 x Zé + 5 X
x

The pfm of the random variable X, given by peoin—dice(®), provided us with several numbers, i.e., the
probabilities of all its possible outcomes. To summarize this information in a single representative number,
we calculate the expectation value or mean of X which is a weighted (in proportion to probabilities)
average of the possible values of X:

E[X] = prx(ac).

The variance of a random variable X is defined as the expected value of the random variable (X — F[X])?,
and it is a measure of the spread of the distribution, i.e., how much X varies around the expected
value:

var[X] = E[(X . E[X])Q]




If we open the squares,
var[X] = E[X?] — E[X]?.

In the discrete case, we can also calculate the variance with

varlX] = 3 (2 - E[X])2 px(@).

x

Solution:

We are now ready to solve our problem. Using the pmf defined above, the expected value of the dice is:

E[X] = Z L Pcoin—dice (1')
X
_ p, (1-p p (1-p)
= 6><[6+ 5 }+(1+2+3+4+5)x[6+ 0 ]
which results on
|B[X]=45—p|

Let us analyze this result. Suppose both of the dice were fair (i.e., , each of the 6 outcome had 1/6 chance
to be seem), or we had only one die. Then the result would not depend on p. The expected value would
be:

1 1
E’[X]fair,dice:(1+2+3+4+5+6)><6><p+(1+2+3+4+5+6)><gx(l—p):3.5.

Back to our problem, since one of the dice is loaded, the result now has a weight in p. Now, suppose the
coin is fair, i.e., p = 1/2 . In this case, the expected value for the dice is:

E'[X]p—05 = 4.5 — 0.5 = 4.

This makes sense because in 50% of the cases we would deal with the loaded die, which has a larger weight
(i.e., it increases the value of the expected value since in 1/4 of the cases we would be seeing 6).

Moreover, the value of p is actually bounded between p € {0, 1}, so if the coin is loaded and it takes the
boundary values, we would have:

E'[X]p—o = 4.5—0 = 4.5,
in which case, we would only use the loaded die (and 1/2 of the cases we would see 6), and
F'[X]pe1 =451 =35,

in which case, we would only use the fair die (and we would recover the first result, when both dice were
fair). Note that despite the —p in the expectation value, probabilities are never negative, and the expectation
values return what the average of the results would be asymptotically.

Now let us plug the previous result into the equation for variance of X:

var[X]| = E[X?] — (4.5 — p)?,



where

. . ] 1— . . ] 1—
6 2 6 10
11
= 6(3—2p)+€(3+2p)
25p A7
3 +5.
Plugging back in the variance equation,
25p AT 81 9 2 5 13
Xl=———F7F+———+9p—p"=-p— —.
var[X] 3 Ty g T =g

Let us analyze this result. Supposing that p = 1, we would only use the fair die. In this case, E[X] = 3.5

(as shown before) and var[X] = % -1+ % = 2.92. This matches to the variance found in a fair die. For the
other boundary value, when p = 0, we find E[X] = 4.5 and var[X| = 3.25. For a fair coin, when p = 1/2,
E[X] = 4.0 and var[X] = 3.3. [ ]

Something commonly used in statistics and machine learning is so called mixture models which may
be seen as a generalization of the above scenario. For some sample space we have several distributions
Pi(X), i =1...k (e.g., the two dice from above). We also have a distribution over these “components”
P(C =1) (e.g., the coin toss, where C' is a binary random variable).

1. Show the form of P(X) in terms of P;(X) and P(C).

Theoretical Introduction:

Let {P;(x)}ica be a collection of distributions for the random variable X, and let C' be a discrete
random variable taking values in A. The mixture distribution of the P;(x) with weights given by
the distribution of C' is defined as:

P(X) = 3 PL P ().

i€EA

In other words, a random variable X having probability P(X) arises first of the random variable C'
and then, if C' =1, it gets X from the distribution P;(x).

Solution:

For our problem, we say that a distribution P(X) is a mixture of the two dice’s distributions, P;(X),
with mixing proportions p and 1 — p (given by the coin). In this case, A = {0,1} and P(C') assumes
the values P2 =1 —p and P}l = p:

P(X)= Y P(C=i)P(X|C=i)= Y P(C=1i)P(X).

ie{0,1} ie{0,1}

Note that this distribution will result in a constant when we select one of events X = z, © €
{0,1,2,3,4,5,6}:



2. Show the form of E(X) in terms of E(X|C).

Theoretical Introduction:

For this, let us derive the Theorem of Total Expectation. Remember that if 7" is an integer-value
random variable, some function L = h(T) is another random variable, with expected value:

E(L) =Y h(k)P(T = k).
k

Solution:

For our problem, the random variables X and C' take values only in the set ¢ € {1,..,k}. For an event,
say C' = i, the quantity F(X|C = 1) is the long-run average of X, among the times when C' = i occurs.
Now, we define a function g(i) = F(X|C = i) (a constant, not a random variable). The quantity
E(X|C) is defined to be a new random variable ), which is a projection in an abstract vector space.
Since @ is a function of C, we find its expectation from the distribution of C:

EE[X]C]]

I
&
)

= ZE(X|C =i)P(C =)

= Z ZjP(X:j\C:i) P(C =)

= ZjZP(X = j|C =i)P(C =)
= > JP(X=))

Resulting in:

3. Show the form of Var(X) in terms of Var(X|C) and E(X|C).

Solution:

For this, let us derive the Law of Total Variance. First of all, the variance of the conditional

expectation of X given C' is:
var[X|C] = E[X?|C] — E[X|C]?.

This has an expectation value of:

Elvar[X|C]] = E|E[X?|C]] - E[E[X|C]’] = E[X®] - E[E[X|C]’].



Now, knowing that E[E(X|C)] = E[C], we calculate the variance of F[X|C|:
var[E[X|C]] = E[E[X|C)?] — E[X]?.
Adding all together:

var[E[X|C]] + E[var[X|C]] = E|[E[X|C]?] - E[X]? + E[X?] — E[E[X|C)?]
= B[X*] - BIX]?,

which is simple, the variance of X:

[var(X) = E[var(X|C)] + var[E(X|C)]. |




3 Parameter Estimation [20 points]

The Poisson distribution is a useful discrete distribution which can be used to model the number of
occurrences of something per unit time. For example, in networking, packet arrival density is often modeled
with the Poisson distribution. That is, if we sit at a computer, count the number of packets arriving in each
time interval, say every minute, for 30 minutes, and plot the histogram of how many time intervals had X
number of packets, we expect to see something like a Poisson PMF curve.

If X (e.g. packet arrival density) is Poisson distributed, then it has PMF:

AXe=A

where A > 0 is the parameter of the distribution and X € {0,1,2,...} is the discrete random variable
modeling the number of events encountered per unit time.

3.1 MLE and MAP estimates [10 points]

It can be shown that the parameter A is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X7, ..., X,, which we assume are drawn
ii.d from Poisson(A).

Theoretical Introduction:

We are interested in estimating parametric models of the form

yi ~ f(0,y:),

where 6 is a vector of parameters and f is some specific functional form (probability density or mass function).
In this example we are using the Poisson distribution :

e~ M\Ni

which have only one parameter to estimate, § = \.

In general, we have some observations on X and we want to estimate the mean and the variance from the
data. The idea of maximum likelihood is to find the estimate of the parameter(s) of the chosen
distribution that maximize the probability of observing the data we observe.

In other words, given y; ~ f(6,y;) we would like to make inferences about the value of #. This is the
inverse of a typical probability problem, where we want to know something about the distribution of y given
the parameters of our model, 0, i.e., P(y|f) or P(data|model). Here, we have the data by we want to learn
about the model, specifically, the model’s parameters, i.e., P(model|data) or P(6|y).

From the probability identities we can derive the Bayes’ Theorem,
P(0,y) = P(0)P(yl0) = P(y)P(Oly),

where the conditional density of p(f|y) is given by:

o P(0y)  PO)P(y]0)
PO =50 = Py,

10



The denominator, P(y), is just a function of the data. Since it only makes sense to compare these conditional
densities from the same data, we can ignore the denominator (for instance, 1/P(y) is called the constant of
proportionality). Rewriting the above equation gives:

| P(0ly) o P(0)P(y]0),

where P(0) is the prior density of 6, P(y|f) is the likelihood, and P(0|y) is the posterior density of 6.
In other words, the likelihood is the sample information that transform the prior to the posterior density of
0. The prior is fixed before the observations.

Without knowing the prior, we would not be able to calculate the inverse probability described above. In
this case, we introduce the notion of likelihood, and the Likelihood Axiom defines:

L(0ly) o< P(yl0).

The likelihood is proportional to the probability of observing the data, treating the parameters of the
distribution as variables and the data as fixed. The advantage of likelihood is that it can be calculated from
a traditional probability, P(y|f#). We can only compare likelihoods for the same set of data and the same
prior. The best estimator, 6, is the value of § that maximizes

L(0y) = P(yl0),

i.e., we are looking for the 6 that maximizes the likelihood of observing our sample, and this will maximize
P(0]y) (the probability of observing the data).

If the y; are all independent (or conditionally independent), then the likelihood of the whole sample is the
product of the individual likelihoods over all the observations:

L = £1X£2X...X£N
N
— Hg
i=1
= P(y1|0) x P(y2/0) x ... x P(yn|0)

N
= Hp(yi\e)-

The negative log of the likelihood function is called error function. Because the negative logarithm is a
monotonically decreasing function, maximizing the likelihood is equivalent to minimizing the error:

N A
InL=>" P(y;0).

i=1

From the log-likelihood, we find oM L which can sometimes be obtained analytically by differentiating the
function with respect to the parameter vector, and setting the resulting gradient vector to zero. Mostly
commonly these calculations are done numerically.

1. [3 pts] Recall that the bias of an estimator of a parameter 6 is defined to be the difference between the
expected value of the estimator and 6.

(a) Show that A = 137, X is the maximum likelihood estimate of .

11



Solution:

For our network example, we derive oML analytically using the Poisson distribution as the underlying

distribution for a count model:

e M\X
yi ~ f(0,y:) = X!
Since the N samples are i.i.d., the likelihood function is:
N X,
e AN
L=P(D\N = —_—
o = I,
_ 12, e AT, A
N Hfil X!
e_NA)\Zf\]:I X
N Hf\il Xi!
The log-likelihood function is:
N AV X,
e\
me = > (T)
i=1

_ i {— At X;In A — ln(Xi!)}

N N
= —NXA+1In()) Z X; — Z In(X;!)
=1 1=1

In other words, R
A = arg max, P(D|)\) = arg max, In P(D|\),

which can be found by taking the derivative with respect to M = A

Oln L 1Y
= :7N+T Xj,,
o P

and solving for A:

1N
—N—i—X;Xi:O.

Resulting in:

N
f= Zi= X
N

To verify that this is maximum, we take the second derivative:

9?InLl 0 1Y 1 Y

which is negative, so the result has a local maximum at .

(b) Show that it is unbiased (that is, show that E[A\] — A = 0). Recall that E[a + b] = Ela] + E[b]

(linearity of expectations).

12



Theoretical Introduction:

Let 6 be a parameter of interest and 6 be an estimator of 6 based on a sample of size N. The bias
of 0 is the difference between 6 and the long run average of the estimates given by 6, based on
different samples of size IV:

bias(0) = E[0] — 6.

An estimator is called unbiased if bias(é) = 0. A biased estimator systematically overestimates or
underestimates the value of 6.

Solution:

The estimator of the parameter 6 is taking over X. We have shown that the standard estimator for
a Poisson population mean is the maximum likelihood estimator:

1

X-4
N “4

then

where we have used the fact that:

BIX] = 2P(X = 1)

Note that in the last step we have used the Taylor expansion for the exponential, assuming that the
number of samples, N, can be taken asymptotically to be infinity: e* = Zfio ‘j—, Plugging the result

of E[)A] back into the bias equation, we show that the Poisson distribution is unbiased:

bias(A) = B[] = A =X —\ = 0.

13



2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter \.

120

100

80

60

40

20

Number of Computers

20 I I I I
0

5 10 15 20
Average Number of Packets per Unit Time

25

Figure 1: Just giving you some motivation. Don’t take it so seriously.

Your friend in networking hands you a typical plot showing the counts of computers at a university
cluster with different average packet arrival densities (Figure 1). Your extensive experience in statistics
tells you that the plot resembles a Gamma distribution pdf. So you believe a good prior distribution
for A may be a Gamma distribution. Recall that the Gamma distribution has pdf:

BY a1 —pa
)\ A
(o) e , A>0

Also, if A ~ T'(a, 3), then it has mean «/3 and the mode is (o — 1)/ for a > 1.2

P(Ae, B) =

Assuming that A is distributed according to I'(A|a, ), compute the posterior distribution over A.

Hint:
)\Z Xi+aflef)\(n+ﬁ)

looks like a Gamma distribution! Is the rest of the expression constant with respect to A?

Solution:

We have shown above that the Bayesian formulation requires:

P(Aly) oc P(A)P(y[A),
where P()) is the prior density of \, P(y|\) is the likelihood, and P(\|y) is the posterior density
of A\. We have also derived the likelihood function for the Poisson distribution:

C MK

N
Py = ] 1
i=1 v

N N
[[is, et [z, A
~
Hi:] X!
eNMTYL, X0
Y, xi!

2T'(a) refers to the Gamma function, but don’t worry if you don’t know what this is—it will not be important for this
question.

14



Now assuming that the prior distribution of A is a Gamma function,

P(\a, ) = D xe"1em8 A >0,

I(a)

we calculate the posterior distribution over A

a —NAWTN X a
P(MNy) « —5 Aol PA S 152171 i = 751\, ACTIHEE Xa o= (NHH)A |
() [T;L, X! (o) [TV, X!

It is clear that the function inside of the first parenthesis is a constant over A and the data, and the
function inside the second parenthesis is a Gamma distribution with parameters & = a + >, X; and

B = [+ N. We can rewrite this result as:

P(Aly) o A&~ Le= PN = ()\|a +3 X8+ N) = (&, B).

Finally, from the Law of probability, we can calculate the normalizing constant:

Z constant x AT Xig=(B+N)A _ 1
By

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of A under a I'(«, 3)
prior.

Theoretical Introduction:

The maximum a posteriori (MAP) estimate can be computed in several ways. Analytically, it
can be calculated when the mode of the posterior distribution can be given in a closed form?. In
this case, the conjugate priors are used, as for example, for the Poisson distribution, which has the
Gamma distribution as its conjugate prior.

The mode is the point where the probability distribution has the highest probability, and in the case
of a Gamma function it is given by:
a—1

/8 )

I(e, B) =

for a > 1.

Solution:

For our problem, we see that if a was greater than 1, & = a—!—ZiV:] X; would also be greater than 1. The
MAP estimation is then the mode of the posterior distribution, i.e., the mode of I'(3, X; +a, N+ f3) :

()z—l_ZiXi-f—O[—l
B N+ |

mode =

3A closed-form expression is an expression that can be written analytically in terms of a finite number of certain well-known
functions.

15



3.2 Estimator Bias/Variance [10 points]

The maximum likelihood estimator is not always unbiased. For example, the maximum likelihood estimator
for the variance of a Normal distribution,

i=1

is biased - and that an unbiased estimator of variance is:

N
~ 1 R
O-Qunbiased = m Z(xz - /’6)2
=1

For the Normal distribution, these estimators give similar results for large enough N, and it is unclear
whether one estimator is preferable to the other. In this problem, we will explore an example in which the
maximum likelihood estimate is dramatically superior to any unbiased estimator.

We will again be interested in the Poisson distribution, but instead of estimating the parameter X\, we will
estimate a nonlinear function of A, namely n = e~2* from a single sample X ~ Poisson()\).

1. [3 pts] Let ) = e~2X. Show that 7 is the maximum likelihood estimate of 7.

Solution:

We calculate the MLE estimation in the same way we did in the previous item, but now setting X the
distribution parameter to A(7):

—2X

e —
e = 7/7]
2\ = —lan
An) = L Inn.
2

Plugging A(n) back to the Poisson distribution equation:

A(n)Xe=2m
X!

1 1 X
= F(— 51117}) ez,

P(X|A(n) =

We take the log:

1 1
In P(X|A(n)) =X 111(75 Inn) + 5 Inn — In(X!),

16



and then we find the minimum by setting the first derivative (with respect of 1) to zero:

dln P(X|n)

= 0
on
1 -1 . r 0
f% Inf 27 27
X B 1
nlnn 21
—2X = In9
,,7 _ €_2X.

This result also can be proved by using the fact that the MLE is invariant under functional transfor-
mations. That is, if A is the MLE of A and if n(\) is a function of A, then n(\) is the MLE of n(\).
]

. [4 pts] Show that the bias of 7} is e=2* — M1/¢*~1),

The following identity from Taylor expansion may be useful:

Solution:

Recalling that bias(n) = E[f)] — n, we calculate E[f)] as we did before(i.e., using Taylor series for the
exponential):

E[]

> AP(X)

X>0

- Y e
X!

X>0

B )\6_2X
ey 0

X>0

—2
67/\6/\6

_ 6(e’271)/\'

The bias is:

bias(n) = E[f] —n = (e DA _ =2

. [3 pts] It turns out that (—1)%X is the only unbiased estimate of 1. Prove that it is indeed unbiased
and briefly explain why this is a bad estimator to use. It may be instructive to plot the values of the
MLE and unbiased estimate for X =1, ..., 10.

17



Solution:

Performing the same calculations as before, assuming 7 = (—1)%:

El] = Y #P(X)

X>0

— ()Y e
X1

X>0

v (=N
= ¢ Z X!
X>0

e e

e 2

The bias is zero:

bias() = E[j] —n=e 2 —e 2} =0.

— real part ; ; ;
— imaginary part 15 -10 -0.5 0.5 10 1.5

X

Figure 2: Left: The oscillatory behavior of /) = (—1)%. Right: = e=2X

The bias is zero: The main characteristic of this estimator is that it will oscillate between negative and
positive values, depending on whether X is even or odd, i.e., it is extremely dependent of the data.
Second, since we are dealing with probabilities, every time X is odd and 7 takes negative values, the
probability can be ill-defined. u

18



4 Regression [20 points]

4.1 Linear Models [12 points]

Suppose that you have a software package for linear regression. The linear regression package takes as input
a vector of responses (Y') and a matrix of features (X), where the entry X; ; corresponds to the ith data
point and the jth feature for that data point and Y; is the ith response of the function. The linear regression
package returns a vector of weights w that minimizes the sum of squared residual errors. The jth entry of
the vector, w; is the weight applied to the jth feature.

For the following functions G; of the input vector C;, you should
EITHER
o specify how the response and features (Y; and X, ;) are calculated for the regression software package

e specify how parameters « can be obtained from the values returned by the regression software package
w so that « is the maximum likelihood estimate

OR
e provide your reasoning for why the software can not be employed

Example. Given the function G; = Z?:O ajC{;l +e =a0+ 01 + Ong’Zl + agci?jl + €; where C;;
is the first component of C; and ¢; ~ N(0,02), by setting: X; ; + 05)1 for j ={0,1,2,3} and Y; «+ G;
for each 4, the software package then returns w* = argmin}_, (y; — wo — w1T;,1 — Waki o — W 3)% =
argmin’y_ . (G; — Z?:o ijf,l)Q. a; < wj then is the MLE for each «; for j = {0,1,2,3}.

Theoretical Introduction:

In linear regression, we have a training set of N observations, x = (x1,..,2n)7, together with the
corresponding values of the target vector, t = (t,...,tx)7. The goal is to exploit this training set to
make predictions of the value ¢ of the target variable for some new & of the input variable. The data is also
corrupted with noise.

We solve the curve fitting problem choosing the value of w for which E(w) is small as possible. The
error function is a quadratic function on w, having derivatives linear in w, so that the minimization of the
error function has a unique solution, denoted by w* (which can be found in closed form). The resulting
polynomial is given by y(z, w*).

1. 2 pts] G; = alCzleCin + ¢; where C; o is the second component of C; and €; ~ N(0, a?).

Solution:

Following the example, we set the response to

and the feature to

Xj,t] — 05—1001'2 s
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for each 4, where C; ; and C; 5 are the first and second components of the input vector Cj, respectively.
The software will return

w* = argmin Z(% —W1T; 1),

K3

so that the maximum likelihood estimate is

Q] < W1 |

. [2 pts] Gi = a1 C?1e%2 4 €; +v; where €; ~ N(0,0%) and ; ~ N(p,03). Here p is the unknown bias
and must be estimated.

Solution:

We now have the unknown bias to be estimated. Using the theory from the next exercise for Gaussians
with different variances, we will use the first weight, wg, assuming that X; o <— 1. In this case we set
the response to

Y < Gi|,

and the features to

2 2
Xio< 1, Xiq+ Ciie77,

for each 4, where C; ; and C; 5 are the first and second components of the input vector Cj, respectively.
The software will return

w* = argmin E (yi — woxip —wixi1),
i
so that the maximum likelihood estimate are
L — W,

and

- [2pts] Gi =3, @ f;(Ci) +¢; where f;(C;) are known basis functions calculated using the input vector
C; and ¢; ~ N(0,0?)

Solution:

This case is similar to the example, except that now f;(C;) are basis functions and the dimension of
the data is not given. In this case, the response is set to

[¥i = G

Xiq < fi(Ci) |,

and the feature is set to

for each 7. The software will return

w* = argmin E (y; — E w;T; ),
i J
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so the maximum likelihood estimates are

4. [2 pts] Gi = 3, agios) f(Ci) + €; where “%” is the modulo operator and ¢; ~ N(0,0?)

Solution:

In this example we also have basis functions to the input vectors. First, the response is set to

(R

This time the parameters «; are divide in five sets, for all possible values returned in the j%5 operation,
i.e., 7 =0,1,2,3,4. To use them for the maximum likelihood estimates, we incorporate these sets into
the basis functions so the features are

X« Z Ji%5(Cs).
J

The software will return

w* = argmin Z(yz — ijxi,j)a
J

i
so the maximum likelihood estimate is

5. [2pts] Gy =3 ; ; fj(C4]0) +¢; where 6 is a real valued unknown parameter in the basis functions and
€ ~ N(0,0?). You need to estimate both a and 6.

Solution:
In this case the software should not be employed. Since this is a linear regression software, it only

works for models that are a linear combination of their parameters (i.e., linear in 6 and «). Since we
do not know the form of the basis functions, they could be non-linear in 6. |

6. [2 pts] €% =[] £;(C;)*] where ; ~ logNormal(0,0?) and the range of f; is positive.?

Solution:

To solve this problem, we apply the log function for both sides:

Ine = In [’Yi H fi(Ci)™

Gi = ln ’)/Z + Z O[j hl fj(CZ),
J

4The log-Normal distribution is the distribution of a random variable whose logarithm is normally distributed.
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where In~y; ~ N(0,02). The response is:

The features are

\X,,J —Inf;(Cy). \

The software will return

w* = argmin E (y; — E Wik ),
J

%

so the maximum likelihood estimate is

4.2 Weighted Least Squares [8 points]

Given instances < z;,t; > generated from the linear regression model
tx) = wihi(x;) + ¢,
i

the least squares estimate for the coefficient vector w is given by
w* = (H'H)"'H"t.
If ey, ..., €, are independent Gaussian with mean 0 and constant standard deviation, the least squares estimate

is also the MLE. In the first three questions, assume that €, ..., €, are independent Gaussian with mean 0,

but the variances are different, i.e. Variance(e;)= o?.

1. [1 pts] Give the formulation for calculati