
CSE 512 Machine Learning: Homework 1

Department of Computer Science
Stony Brook University

• There are 6 questions on this assignment. The last question involves coding. Do not attach your code
to the writeup. Instead, zip all your source files, and upload the .zip file on Blackboard. Name your
.zip file with your SBU name, e.g. leman.zip

• The assignment is due at 5:30 PM (beginning of class) on Tue, Feb 25, 2014.

• Do not forget to put both your name and SBU ID on each page of your submission.

• If you have any questions, please direct your question first to the TA, then the instructor.

1 Machine Learning - Problem Setup [10 points]

In online debate forums, people debate issues, express their preferences, and argue why their viewpoint is
right. For example, a debate can be “which mobile phone is better: iPhone or Blackberry,” or “which OS is
better: Windows vs. Linux vs. Mac?” Given a debate forum, machine learning can be applied to:

a. Detect the hot debate topics. (Hint: a debate topic is one on which there exist many discussions, with
both positive and negative opinions.)

b. For each topic, identify the points of contention within the debate.

c. For a given topic, recognize which stance a person is taking in an online debate posting.

For each of the tasks above: (1) Specify what type of machine learning problem it is (supervised or unsu-
pervised; and regression, classification, or density estimation, etc). (2) Identify what will be (i) the training
data,(ii) the features, (iii) the labels (if any), (iv) and what would be the algorithm output. Note that there
exist multiple possible answers for this question, depending on how you formulate the problem set up.

2 Probability [10 points]

2.1 Conditional Probability and the Chain Rule [3 points]

Recall the definition of a conditional probability:

P (A|B) =
P (A ∩B)

P (B)

1. Prove that P (A ∩B ∩ C) = P (A|B,C)P (B|C)P (C)

2.2 Total Probability [7 points]

Suppose that I have two six-sided dice, one is fair and the other one is loaded – having:

P (x) =

{
1
2 x = 6
1
10 x ∈ {1, 2, 3, 4, 5}
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I will toss a coin to decide which die to roll. If the coin flip is heads I will roll the fair die, otherwise the
loaded one. The probability that the coin flip is heads is p ∈ (0, 1).

1. What is the expectation of the die roll (in terms of p)?

2. What is the variance of the die roll (in terms of p)?

Something commonly used in statistics and machine learning are so called “mixture models” which may
be seen as a generalization of the above scenario. For some sample space we have several distributions
Pi(X), i = 1 . . . k (e.g., the two dice from above). We also have a distribution over these “components”
P (C = i) (e.g., the coin toss, where C is a binary random variable).

1. Show the form of P (X) in terms of Pi(X) and P (C).

2. Show the form of E(X) in terms of E(X|C). Make your answer as compact as possible.

3. Show the form of Var(X) in terms of Var(X|C) and E(X|C). Make your answer as compact as possible.

3 Parameter Estimation [20 points]

The Poisson distribution is a useful discrete distribution which can be used to model the number of occur-
rences of something per unit time. For example, in networking, packet arrival density is often modeled with
the Poisson distribution. That is, if we sit at a computer, count the number of packets arriving in each time
interval, say every minute, for 30 minutes, and plot the histogram of how many time intervals had X number
of packets, we expect to see something like a Poisson pmf curve.

If X (e.g. packet arrival density) is Poisson distributed, then it has pmf

P (X|λ) :=
λXe−λ

X!
,

where λ > 0 is the parameter of the distribution and X ∈ {0, 1, 2, . . .} is the discrete random variable
modeling the number of events encountered per unit time.

Note: For the purposes of this problem, everything you need to know about Poisson and Gamma distributions
will be provided.

3.1 MLE and MAP estimates [10 points]

It can be shown that the parameter λ is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X1, ..., Xn which we assume are drawn
i.i.d from Poisson(λ).

1. [3 pts] Recall that the bias of an estimator of a parameter θ is defined to be the difference between the
expected value of the estimator and θ.

Show that λ̂ = 1
n

∑
iXi is the maximum likelihood estimate of λ and that it is unbiased (that is, show

that E[λ̂]− λ = 0). Recall that E[a+ b] = E[a] + E[b] (linearity of expectations).

2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter λ.

Your friend in networking hands you a typical plot showing the counts of computers at a university
cluster with different average packet arrival densities (Figure 1). Your extensive experience in statistics
tells you that the plot resembles a Gamma distribution pdf. So you believe a good prior distribution
for λ may be a Gamma distribution.
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3.1 MLE and MAP estimates

It can be shown that the parameter λ is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X1, . . . , Xn which we assume are drawn
i.i.d from Poisson(λ).

1. [3 pts] Recall that the bias of an estimator of a parameter θ is defined to be the difference between the
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2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter λ.

Your friend in networking hands you a typical plot showing the counts of computers at a university
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Figure 1: Just giving you some motivation. Don’t take it so seriously.

Recall that the Gamma distribution has pdf:

p(λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ > 0

Also, if λ ∼ Γ(α, β), then it has mean α/β and the mode is (α− 1)/β for α > 1. 4

Assuming that λ is distributed according to Γ(λ|α, β), compute the posterior distribution over λ.

Hint:
λ

P

Xi+α−1e−λ(n+β)

looks like a Gamma distribution! Is the rest of the expression constant with respect to λ? Working
out a messy integral can lead to the answer but shouldn’t be necessary.

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of λ under a Γ(α, β)
prior.

3.2 Estimator Bias/Variance

In class, we learned that the maximum likelihood estimator is not always unbiased. For example, we saw
that the maximum likelihood estimator for the variance of a Normal distribution,

σ̂2
MLE =

1

N

N∑

i=1

(xi − µ̂)2

4Γ(α) refers to the Gamma function, but don’t worry if you don’t know what this is - it will not be important for this
question.
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Recall that the Gamma distribution has pdf:

p(λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ > 0

Also, if λ ∼ Γ(α, β), then it has mean α/β and the mode is (α− 1)/β for α > 1.1

Assuming that λ is distributed according to Γ(λ|α, β), compute the posterior distribution over λ.

Hint:

λ
∑
Xi+α−1e−λ(n+β)

looks like a Gamma distribution! Is the rest of the expression constant with respect to λ? Working
out a messy integral can lead to the answer but shouldn’t be necessary.

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of λ under a Γ(α, β)
prior.

3.2 Estimator Bias/Variance [10 points]

The maximum likelihood estimator is not always unbiased. For example, the maximum likelihood estimator
for the variance of a Normal distribution,

σ̂2
MLE =

1

N

N∑

i=1

(xi − µ̂)2

is biased - and that an unbiased estimator of variance is:

σ̂2
unbiased =

1

N − 1

N∑

i=1

(xi − µ̂)2

For the Normal distribution, these estimators give similar results for large enough N , and it is unclear
whether one estimator is preferable to the other. In this problem, we will explore an example in which the
maximum likelihood estimate is dramatically superior to any unbiased estimator.

1Γ(α) refers to the Gamma function, but don’t worry if you don’t know what this is—it will not be important for this
question.
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We will again be interested in the Poisson distribution, but instead of estimating the parameter λ, we will
estimate a nonlinear function of λ, namely η = e−2λ from a single sample X ∼ Poisson(λ).

1. [3 pts] Let η̂ = e−2X . Show that η̂ is the maximum likelihood estimate of η.

2. [4 pts] Show that the bias of η̂ is e−2λ − eλ(1/e2−1).
The following identity from Taylor expansion may be useful:

et =

∞∑

n=0

tn

n!

3. [3 pts] It turns out that (−1)X is the only unbiased estimate of η. Prove that it is indeed unbiased
and briefly explain why this is a bad estimator to use. It may be instructive to plot the values of the
MLE and unbiased estimate for X = 1, ..., 10.

4 Regression [20 points]

4.1 Linear Models [12 points]

Suppose that you have a software package for linear regression. The linear regression package takes as input
a vector of responses (Y ) and a matrix of features (X), where the entry Xi,j corresponds to the ith data
point and the jth feature for that data point and Yi is the ith response of the function. The linear regression
package returns a vector of weights w that minimizes the sum of squared residual errors. The jth entry of
the vector, wj is the weight applied to the jth feature.

For the following functions Gi of the input vector Ci, you should

EITHER

• specify how the response and features (Yi and Xi,j) are calculated for the regression software package

• specify how parameters α can be obtained from the values returned by the regression software package
w so that α is the maximum likelihood estimate

OR

• provide your reasoning for why the software can not be employed

Example. Given the function Gi =
∑3
j=0 αjC

j
i,1 + εi = α0 + α1Ci,1 + α2C

2
i,1 + α3C

3
i,1 + εi where Ci,1

is the first component of Ci and εi ∼ N(0, σ2), by setting: Xi,j ← Cji,1 for j = {0, 1, 2, 3} and Yi ← Gi
for each i, the software package then returns w∗ = argmin

∑
i(yi − w0 − w1xi,1 − w2xi,2 − w3xi,3)2 =

argmin
∑
i(Gi −

∑3
j=0 wjC

j
i,1)2. αj ← wj then is the MLE for each αj for j = {0, 1, 2, 3}.

1. [2 pts] Gi = α1C
2
i,1e

Ci,2 + εi where Ci,2 is the second component of Ci and εi ∼ N(0, σ2).

2. [2 pts] Gi = α1C
2
i,1e

Ci,2 + εi + γi where εi ∼ N(0, σ2
1) and γi ∼ N(µ, σ2

2). Here µ is the unknown bias
and must be estimated.

3. [2 pts] Gi =
∑
j αjfj(Ci)+ εi where fj(Ci) are known basis functions calculated using the input vector

Ci and εi ∼ N(0, σ2)

4. [2 pts] Gi =
∑
j α(j%5)fj(Ci) + εi where “%” is the modulo operator and εi ∼ N(0, σ2)

5. [2 pts] Gi =
∑
j αjfj(Ci|θ) + εi where θ is a real valued unknown parameter in the basis functions and

εi ∼ N(0, σ2). You need to estimate both α and θ.
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6. [2 pts] eGi = γi[
∏
fj(Ci)

αj ] where γi ∼ logNormal(0, σ2) and the range of fj is positive.2

4.2 Weighted Least Squares [8 points]

Given instances < xi, ti > generated from the linear regression model t(x) =
∑
i wihi(xj) + εj , the least

squares estimate for the coefficient vector w is given by w∗ = (HTH)−1HT t. If ε1, ..., εn are independent
Gaussian with mean 0 and constant standard deviation, the least squares estimate is also the MLE. In the
first three questions, assume that ε1, ..., εn are independent Gaussian with mean 0, but the variances are
different, i.e. Variance(εi)= σ2

i .

1. [1 pts] Give the formulation for calculating the MLE of w.

2. [2 pts] Calculate the MLE of w.

3. [2 pts] Explain why the MLE of w can also be obtained by weighted least squares, i.e. w∗ is obtained
by minimizing the weighted residual squared error

∑
j aj(tj −

∑
i wihi(xj))

2, where aj is the weights.
Give the weights aj .

4. [2 pts] If ε1, ..., εn are independent Laplace with mean 0 and the same scale parameter b, i.e., the pdf

of εi is fεi(x) = 1
2bexp(−

|x|
b ), give the formulation for calculating the MLE for w (closed form solution

is not required).

5. [1 pts] Sometimes the model in the last question is preferred because its solution tends to be more
robust to noise. Explain why this is true.

5 Decision Trees [20 points]

5.1 ID3 and KL Divergence [7 points]

Consider the following set of training examples for the unknown target function < X1, X2 >→ Y . Each row
indicates the values observed, and how many times that set of values was observed. For example, (+, T, T )
was observed 3 times, while (−, T, T ) was never observed.

Y X1 X2 Count
+ T T 3
+ T F 4
+ F T 4
+ F F 1
- T T 0
- T F 1
- F T 3
- F F 5

Table 1: Training data

1. [2 pts] Compute the sample entropy H(Y ) for this training data (with logarithms base 2)?

2. [3 pts] What are the information gains IG(X1) ≡ H(Y )−H(Y |X1) and IG(X2) ≡ H(Y )−H(Y |X2)
for this sample of training data?

2The log-Normal distribution is the distribution of a random variable whose logarithm is normally distributed.
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3. [2 pts] Draw the decision tree that would be learned by ID3 (without postpruning) from this sample
of training data.

5.2 Information Gain and Entropy [5 points]

When we discussed learning decision trees in class, we chose the next attribute to split on by choosing the
one with maximum information gain, which was defined in terms of entropy. To further our understanding
of information gain, we will explore its connection to KL-divergence, an important concept in information
theory and machine learning. For more on these concepts, refer to Section 1.6 in Bishop.

The KL-divergence from a distribution p(x) to a distribution q(x) can be thought of as a measure of dissim-
ilarity from P to Q:

KL(p||q) = −
∑

p(x) log2
q(x)

p(x)

We can define information gain as the KL-divergence from the observed joint distribution of X and Y to the
product of their observed marginals.

IG(x, y) ≡ KL (p(x, y)||p(x)p(y)) = −
∑

x

∑

y

p(x, y) log2

(
p(x)p(y)

p(x, y)

)

When the information gain is high, it indicates that adding a split to the decision tree will give a more
accurate model.

1. [3 pts] Show that definition of information gain above is equivalent to the one given in class. That
is, show that IG(x, y) = H[x] − H[x|y] = H[y] − H[y|x], starting from the definition in terms of
KL-divergence.

2. [2 pts] In light of this observation, how can we interpret information gain in terms of dependencies
between random variables? A brief answer will suffice.

5.3 Consistent Trees [8 points]

We know that a tree with lower complexity will tend to have better generalization properties. So one (rather
simplistic) option to help avoid overfitting is to find the simplest tree that fits the data. This follows the
principle known as Occam’s Razor. One simple way to define “simplest” is based on the depth of the tree.
Specifically, the depth is the number of nodes along the longest root-to-leaf path. For example, the tree from
part 1 would have depth 2. In this problem, we will be interested in learning the tree of least depth that fits
the data.

Suppose the training examples are n-dimensional boolean vectors, where n > 2 is some constant integer.
(For example (T, F, F, T, T ) is a 5 dimensional boolean vector). We know that the ID3 decision tree learning
algorithm is guaranteed to find a decision tree consistent3 with any set of (not self-contradicting) training
examples, but that doesn’t necessarily mean it will find a short tree.

1. [4 pts] For n = 3, does ID3 always find a consistent decision tree of depth ≤ 2 if one exists? If so,
prove it. If not, provide a counterexample (a set of examples, similar to Table 1 above, but with 3
variables), with an explanation.

3A “consistent” tree is one with zero training error.
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2. [4 pts] Propose your own learning algorithm that finds a shortest decision tree consistent with any set
of training examples (your algorithm can have running time exponential in the depth of the shortest
tree). Give the pseudocode and a brief explanation.

6 Naive Bayes vs Logistic Regression [20 points]

In this problem you will implement Naive Bayes and Logistic Regression, then compare their performance
on a document classification task. The data for this task is taken from the 20 Newsgroups data set4, and
is available at http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hw1-data.tar.gz. The
included README.txt describes the data set and file format.

Our Naive Bayes model will use the bag-of-words assumption. This model assumes that each word in a
document is drawn independently from a multinomial distribution over possible words. (A multinomial
distribution is a generalization of a Bernoulli distribution to multiple values.) Although this model ignores
the ordering of words in a document, it works surprisingly well for a number of tasks. We number the words
in our vocabulary from 1 to m, where m is the total number of distinct words in all of the documents.
Documents from class y are drawn from a class-specific multinomial distribution parameterized by θy. θy is
a vector, where θy,i is the probability of drawing word i and

∑m
i=1 θy,i = 1. Therefore, the class-conditional

probability of drawing document x from our Naive Bayes model is P (X = x|Y = y) =
∏m
i=1(θy,i)

counti(x),
where counti(x) is the number of times word i appears in x.

1. [5 pts] Provide high-level descriptions of the Naive Bayes and Logistic Regression algorithms. Be sure
to describe how to estimate the model parameters and how to classify a new example.

2. [3 pts] Imagine that a certain word is never observed in the training data, but occurs in a test instance.
What will happen when our Naive Bayes classifier predicts the probability of the this test instance?
Explain why this situation is undesirable. Will logistic regression have a similar problem? Why or why
not?

Add-one smoothing is one way to avoid this problem with our Naive Bayes classifier. This technique
pretends that every word occurs one additional time in the training data, which eliminates zero counts
in the estimated parameters of the model. For a set of documents C = x1, ..., xn, the add-one smoothing

parameter estimate is θ̂i =
1+

∑n
j=1 counti(x

j)

D+m , where D is the total number of words in C (i.e., D =∑m
i=1

∑n
j=1 counti(x

j)). Empirically, add-one smoothing often improves classification performance
when data counts are sparse.

3. [10 pts] Implement Logistic Regression and Naive Bayes. Use add-one smoothing when estimating the
parameters of your Naive Bayes classifier. For logistic regression, we found that a step size around
.0001 worked well. Train both models on the provided training data and predict the labels of the test
data. Report the training and test error of both models. Submit your code electronically on Blackboard
under SafeAssignments. You do not need to include a hard copy of your code along with your HW
submission.

4. [2 pts] Which model performs better on this task? Why do you think this is the case?

4Full version available from http://people.csail.mit.edu/jrennie/20Newsgroups/
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CSE 512 Machine Learning: Homework I

Mari Wahl, marina.w4hl at gmail

1 Machine Learning - Problem Setup [10 points]

In online debate forums, people debate issues, express their preferences, and argue why their viewpoint is
right. For example, a debate can be “which mobile phone is better: iPhone or Blackberry,” or “which OS is
better: Windows vs. Linux vs. Mac?” Given a debate forum, machine learning can be applied to:

a. Detect the hot debate topics. (Hint: a debate topic is one on which there exist many discussions, with
both positive and negative opinions.)

Solutions:

Each post in the forum would be an instance of our data. They could be indexed, for example, by post
message, by author, and by time. We also add an index for the topic of the post, which would
relate groups of posts. If we are using many forums, we can also add the forum name to the data,
which would not make any difference for the items below (but could give some additional statistical
information if desired).

To be able to find the hot topics, we start by adding a grade to the opinion of the post: positive,
negative, or impartial. A hot topic is defined as a topic that has many responses which must be
either positive and negative (not impartial). These response must be by many authors (although some
authors can respond more than once, they will in general maintain the same opinion). A range of time
can also be stipulated for the valid posts (some discussions lose their validity or hotness after some
time).

1. Type of machine learning: Unsupervised learning

2. Algorithm output: The task of detecting what are the hot topics can be done with density
estimation.

�

b. For each topic, identify the points of contention within the debate.

Solution:

For each hot topic found in the item above, we find the points of contention by searching for the
features that are mentioned within the disagreement though the posts. For example, when debating
about phones, if one post says something positive about, for example, the camera of a model, and then
another point has a negative comment about this characteristic, this is a contention point. Each post
will be indexed by a different author.

1. Type of machine learning: Unsupervised learning.

2. Algorithm output: task of detecting what are the points of contention for the topics can be
done with density estimation.

1
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c. For a given topic, recognize which stance a person is taking in an online debate posting.

Solution:

After the results from the previous items, we have a set of what are the point of the contentions, and
these become the features. This time we are actually using the labels in each features to be able to
recognize the stances people are taking in each post. In other words, for each post, we can find if the
opinion for these feature are positive, negative, or impartial, then for each author, we can learn what
are their stances (note that not all the features will have a corresponding value for every post, so this
should be considered in the algorithm).

1. Type of machine learning: Supervised learning.

2. Training data: Chose some posts within the hot topics, containing the points of contention.

3. Features: Characteristics such as usability, appearance, price, operational system, etc (extracted
from the points of contention).

4. Labels: Positive, negative, and impartial.

5. Algorithm output: Depending on the majority of positive or negative labels for the features,
we can define a criteria to recognize the stance of each user as positive, negative, or impartial.
For example, the simplest case would be saying that if there are more negatives than positives,
the person’s stance is negative, or if they amount the same, the person is impartial. We could
also attribute weights for the features that seems to be more relevant or more recurring.

�
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2 Probability [10 points]

2.1 Conditional Probability and the Chain Rule [3 points]

Theoretical Introduction:

The expression P (A) denotes the probability that the event A is true, where 0 ≤ P (A) ≤ 1. Given two
events, A and B, we define the probability of A or B, as

P (A or B) = P (A ∪B) = P (A) + P (B)− P (A and B) = P (A) + P (B)− P (A ∩B).

If A and B are events that are impossible to occur at the same time, they are called disjoints,

P (A and B) = P (A ∩B) = 0.

In this case, the probability above reduces to:

P (A or B) = P (A ∪B) = P (A) + P (B).

If A and B are not disjoints, the joint probability of the joint events A and B, also called product rule,
is given by

P (A and B) = P (A ∩B) = P (A,B) = P (A)P (B|A) = P (B)P (A|B).

If A and B are stochastically independent,

P (B|A) = P (B),

and the probability above expression reduces to:

P (A and B) = P (A ∩B) = P (A)P (B).

If P (B) > 0 we can define the conditional probability of event A, given that event B is true, as:

P (A|B) =
P (A,B)

P (B)
=
P (A ∩B)

P (B)
.

Given a joint distribution on two events P (A and B) = P (A,B), the marginal distribution is

P (A) =
∑

b∈Im(B)

P (A,B) =
∑

b

P (A|B = b)P (B = b),

where we are summing over all possible states of B. This is called the sum rule or the rule of total
probability.
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Solution:

Let A, B, and C be random variables representing three different events1. We now are going to proof the
equality:

P (A ∩B ∩ C) = P (A|B,C)P (B|C)P (C). (1)

Let us define the random variable κ = B ∩C. The conditional probability for events B and C in terms of κ
is given by:

P (B ∩ C) = P (B|C)P (C) = P (κ).

Now, the conditional probability for events A and κ is:

P (A ∩ κ) = P (A ∩B ∩ C) = P (A|κ)P (κ),

which is just

P (A|κ)P (κ) = P (A|B ∩ C)P (B ∩ C)

= P (A|B,C)P (B|C)P (C).

Since probability multiplications are commutative (as any real-valued function in a unidimensional space),
we complete the proof of Eq. 1. �

A second way to perform the same proof is by induction, using the equation for conditional probabil-
ity:

P (A ∩B ∩ C) = P (A ∩B ∩ C)× P (B ∩ C)

P (B ∩ C)

= P (B ∩ C)
P (A ∩B ∩ C)

P (B ∩ C)

= P (B ∩ C)P (A|B ∩ C)

= P (C)P (B|C)P (A|B,C)

It is possible to generalize this result for N events. �

2.2 Total Probability [7 points]

Suppose that I have two six-sided dice, one is fair and the other one is loaded. having:

P (x) =

{
1
2 x = 6
1
10 x ∈ {1, 2, 3, 4, 5}

I will toss a coin to decide which die to roll. If the coin flip is heads I will roll the fair die, otherwise the
loaded one. The probability that the coin flip is heads is p ∈ (0, 1).

1. What is the expectation of the die roll (in terms of p)?

2. What is the variance of the die roll (in terms of p)?

1A random variable is a numerical outcome of the experiment, i.e., a real-valued function whose domain is the sample
space.
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Theoretical Introduction:

In a probabilistic model of an experiment, a random variable is a real-valued function of the outcome of
the experiment. In this case, we define the outcome of the coin-dice experiment by the random variable X
(i.e., it will take the possible outcomes for the dice).

A discrete random variable has an associated probability mass function (pfm), which gives the proba-
bility of each numerical value that the random variable can take. In this problem, the pfm for the fair dice
is:

pfair dice(x) =
1

2
, x ∈ {1, 2, 3, 4, 5, 6}.

The pfm for the loaded dice is:

ploaded(x) =

{
1
2 , x = 6
1
10 , x ∈ {1, 2, 3, 4, 5}

The pfm for the coin is:

pcoin(c) =

{
p, c = head

(1− p), c = tail

A function of a discrete random variable defines another discrete random variable, whose pfm can be obtained
from the pfm of the original random variables. Therefore, we have:

pcoin−dice(x, c) =





p× 1
6 , if x = 6 and c = head

(1− p)× 1
2 , if x = 6 and c = tail

p× 1
6 , if x ∈ {1, 2, 3, 4, 5} and c = head

(1− p)× 1
10 , if x ∈ {1, 2, 3, 4, 5} and c = tail

In terms of the random variable X:

pcoin−dice(x) =

{
p
6 + (1−p)

2 , if x = 6
p
6 + (1−p)

10 , if x ∈ {1, 2, 3, 4, 5}

Note that ∑

x

pcoin−dice(x) = 6× p

6
+ 5× (1− p)

10
+

(1− p)
2

= p+ (1− p) = 1.

The pfm of the random variable X, given by pcoin−dice(x), provided us with several numbers, i.e., the
probabilities of all its possible outcomes. To summarize this information in a single representative number,
we calculate the expectation value or mean of X which is a weighted (in proportion to probabilities)
average of the possible values of X:

E[X] =
∑

x

xpX(x).

The variance of a random variable X is defined as the expected value of the random variable (X −E[X])2,
and it is a measure of the spread of the distribution, i.e., how much X varies around the expected
value:

var[X] = E
[
(X − E[X])2

]
.
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If we open the squares,
var[X] = E[X2]− E[X]2.

In the discrete case, we can also calculate the variance with

var[X] =
∑

x

(
x− E[X]

)2
pX(x).

Solution:

We are now ready to solve our problem. Using the pmf defined above, the expected value of the dice is:

E[X] =
∑

X

x pcoin−dice(x)

= 6×
[p

6
+

(1− p)
2

]
+ (1 + 2 + 3 + 4 + 5)×

[p
6

+
(1− p)

10

]
,

which results on
E[X] = 4.5− p.

Let us analyze this result. Suppose both of the dice were fair (i.e., , each of the 6 outcome had 1/6 chance
to be seem), or we had only one die. Then the result would not depend on p. The expected value would
be:

E′[X]fair−dice = (1 + 2 + 3 + 4 + 5 + 6)× 1

6
× p+ (1 + 2 + 3 + 4 + 5 + 6)× 1

6
× (1− p) = 3.5.

Back to our problem, since one of the dice is loaded, the result now has a weight in p. Now, suppose the
coin is fair, i.e., p = 1/2 . In this case, the expected value for the dice is:

E′[X]p=0.5 = 4.5− 0.5 = 4.

This makes sense because in 50% of the cases we would deal with the loaded die, which has a larger weight
(i.e., it increases the value of the expected value since in 1/4 of the cases we would be seeing 6).

Moreover, the value of p is actually bounded between p ∈ {0, 1}, so if the coin is loaded and it takes the
boundary values, we would have:

E′[X]p=0 = 4.5− 0 = 4.5,

in which case, we would only use the loaded die (and 1/2 of the cases we would see 6), and

E′[X]p=1 = 4.5− 1 = 3.5,

in which case, we would only use the fair die (and we would recover the first result, when both dice were
fair). Note that despite the −p in the expectation value, probabilities are never negative, and the expectation
values return what the average of the results would be asymptotically.

Now let us plug the previous result into the equation for variance of X:

var[X] = E[X2]− (4.5− p)2,
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where

E[X2] = 62 ×
[p

6
+

(1− p)
2

]
+ (12 + 22 + 32 + 42 + 52)×

[p
6

+
(1− p)

10

]

= 6(3− 2p) +
11

6
(3 + 2p)

= −25p

3
+

47

2
.

Plugging back in the variance equation,

var[X] = −25p

3
+

47

2
− 81

4
+ 9p− p2 =

2

3
p− p2 +

13

4
.

Let us analyze this result. Supposing that p = 1, we would only use the fair die. In this case, E[X] = 3.5
(as shown before) and var[X] = 2

3 − 1 + 13
4 = 2.92. This matches to the variance found in a fair die. For the

other boundary value, when p = 0, we find E[X] = 4.5 and var[X] = 3.25. For a fair coin, when p = 1/2,
E[X] = 4.0 and var[X] = 3.3. �

Something commonly used in statistics and machine learning is so called mixture models which may
be seen as a generalization of the above scenario. For some sample space we have several distributions
Pi(X), i = 1 . . . k (e.g., the two dice from above). We also have a distribution over these “components”
P (C = i) (e.g., the coin toss, where C is a binary random variable).

1. Show the form of P (X) in terms of Pi(X) and P (C).

Theoretical Introduction:

Let {Pi(x)}i∈A be a collection of distributions for the random variable X, and let C be a discrete
random variable taking values in A. The mixture distribution of the Pi(x) with weights given by
the distribution of C is defined as:

P (X) =
∑

i∈A
P iC Pi(x).

In other words, a random variable X having probability P (X) arises first of the random variable C
and then, if C = i, it gets X from the distribution Pi(x).

Solution:

For our problem, we say that a distribution P (X) is a mixture of the two dice’s distributions, Pi(X),
with mixing proportions p and 1 − p (given by the coin). In this case, A = {0, 1} and P (C) assumes
the values P 0

C = 1− p and P 1
C = p:

P (X) =
∑

i∈{0,1}
P (C = i)P (X|C = i) =

∑

i∈{0,1}
P (C = i)Pi(X).

Note that this distribution will result in a constant when we select one of events X = x, x ∈
{0, 1, 2, 3, 4, 5, 6}:

P (X = x) =
∑

i∈{0,1}
P (C = i)Pi(X = x).

�
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2. Show the form of E(X) in terms of E(X|C).

Theoretical Introduction:

For this, let us derive the Theorem of Total Expectation. Remember that if T is an integer-value
random variable, some function L = h(T ) is another random variable, with expected value:

E(L) =
∑

k

h(k)P (T = k).

Solution:

For our problem, the random variables X and C take values only in the set i ∈ {1, .., k}. For an event,
say C = i, the quantity E(X|C = i) is the long-run average of X, among the times when C = i occurs.
Now, we define a function g(i) = E(X|C = i) (a constant, not a random variable). The quantity
E(X|C) is defined to be a new random variable Q, which is a projection in an abstract vector space.
Since Q is a function of C, we find its expectation from the distribution of C:

E[E[X|C]] = E(Q)

=
∑

i

g(i)P (C = i)

=
∑

i

E(X|C = i)P (C = i)

=
∑

i

[∑

j

jP (X = j|C = i)

]
P (C = i)

=
∑

j

j
∑

i

P (X = j|C = i)P (C = i)

=
∑

j

jP (X = j)

= E(X).

Resulting in:

E(X) = E[E[X|C]].

�

3. Show the form of Var(X) in terms of Var(X|C) and E(X|C).

Solution:

For this, let us derive the Law of Total Variance. First of all, the variance of the conditional
expectation of X given C is:

var[X|C] = E[X2|C]− E[X|C]2.

This has an expectation value of:

E[var[X|C]] = E[E[X2|C]]− E[E[X|C]2] = E[X2]− E[E[X|C]2].
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Now, knowing that E[E(X|C)] = E[C], we calculate the variance of E[X|C]:

var[E[X|C]] = E[E[X|C]2]− E[X]2.

Adding all together:

var[E[X|C]] + E[var[X|C]] = E[E[X|C]2]− E[X]2 + E[X2]− E[E[X|C]2]

= E[X2]− E[X]2,

which is simple, the variance of X:

var(X) = E[var(X|C)] + var[E(X|C)].

�
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3 Parameter Estimation [20 points]

The Poisson distribution is a useful discrete distribution which can be used to model the number of
occurrences of something per unit time. For example, in networking, packet arrival density is often modeled
with the Poisson distribution. That is, if we sit at a computer, count the number of packets arriving in each
time interval, say every minute, for 30 minutes, and plot the histogram of how many time intervals had X
number of packets, we expect to see something like a Poisson PMF curve.

If X (e.g. packet arrival density) is Poisson distributed, then it has PMF:

P (X|λ) :=
λXe−λ

X!
,

where λ > 0 is the parameter of the distribution and X ∈ {0, 1, 2, . . .} is the discrete random variable
modeling the number of events encountered per unit time.

3.1 MLE and MAP estimates [10 points]

It can be shown that the parameter λ is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X1, ..., Xn which we assume are drawn
i.i.d from Poisson(λ).

Theoretical Introduction:

We are interested in estimating parametric models of the form

yi ∼ f(θ, yi),

where θ is a vector of parameters and f is some specific functional form (probability density or mass function).
In this example we are using the Poisson distribution :

yi ∼ f(λ,Xi) =
e−λλXi

Xi!
,

which have only one parameter to estimate, θ = λ.

In general, we have some observations on X and we want to estimate the mean and the variance from the
data. The idea of maximum likelihood is to find the estimate of the parameter(s) of the chosen
distribution that maximize the probability of observing the data we observe.

In other words, given yi ∼ f(θ, yi) we would like to make inferences about the value of θ. This is the
inverse of a typical probability problem, where we want to know something about the distribution of y given
the parameters of our model, θ, i.e., P (y|θ) or P (data|model). Here, we have the data by we want to learn
about the model, specifically, the model’s parameters, i.e., P (model|data) or P (θ|y).

From the probability identities we can derive the Bayes’ Theorem,

P (θ, y) = P (θ)P (y|θ) = P (y)P (θ|y),

where the conditional density of p(θ|y) is given by:

P (θ|y) =
P (θ, y)

P (y)
=
P (θ)P (y|θ)
P (y).
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The denominator, P (y), is just a function of the data. Since it only makes sense to compare these conditional
densities from the same data, we can ignore the denominator (for instance, 1/P (y) is called the constant of
proportionality). Rewriting the above equation gives:

P (θ|y) ∝ P (θ)P (y|θ),

where P (θ) is the prior density of θ, P (y|θ) is the likelihood, and P (θ|y) is the posterior density of θ.
In other words, the likelihood is the sample information that transform the prior to the posterior density of
θ. The prior is fixed before the observations.

Without knowing the prior, we would not be able to calculate the inverse probability described above. In
this case, we introduce the notion of likelihood, and the Likelihood Axiom defines:

L(θ|y) ∝ P (y|θ).

The likelihood is proportional to the probability of observing the data, treating the parameters of the
distribution as variables and the data as fixed. The advantage of likelihood is that it can be calculated from
a traditional probability, P (y|θ). We can only compare likelihoods for the same set of data and the same

prior. The best estimator, θ̂, is the value of θ that maximizes

L(θ|y) = P (y|θ),

i.e., we are looking for the θ̂ that maximizes the likelihood of observing our sample, and this will maximize
P (θ|y) (the probability of observing the data).

If the yi are all independent (or conditionally independent), then the likelihood of the whole sample is the
product of the individual likelihoods over all the observations:

L = L1 × L2 × ...× LN

=

N∏

i=1

L

= P (y1|θ)× P (y2|θ)× ...× P (yN |θ)

=

N∏

i=1

P (yi|θ).

The negative log of the likelihood function is called error function. Because the negative logarithm is a
monotonically decreasing function, maximizing the likelihood is equivalent to minimizing the error:

lnL =

N∑

i=1

P (yi|θ̂).

From the log-likelihood, we find θ̂ML, which can sometimes be obtained analytically by differentiating the
function with respect to the parameter vector, and setting the resulting gradient vector to zero. Mostly
commonly these calculations are done numerically.

1. [3 pts] Recall that the bias of an estimator of a parameter θ is defined to be the difference between the
expected value of the estimator and θ.

(a) Show that λ̂ = 1
n

∑
iXi is the maximum likelihood estimate of λ.

11



Solution:

For our network example, we derive θ̂ML analytically using the Poisson distribution as the underlying
distribution for a count model:

yi ∼ f(θ, yi) =
e−λλX

X!
.

Since the N samples are i.i.d., the likelihood function is:

L = P (D|λ) =

N∏

i=1

e−λλXi

Xi!

=

∏N
i=1 e

−λ
∏N
i=1 λ

Xi

∏N
i=1Xi!

=
e−Nλλ

∑N
i=1Xi

∏N
i=1Xi!

.

The log-likelihood function is:

lnL =

N∑

i=1

ln
(e−λλXi

Xi!

)

=

N∑

i=1

[
− λ+Xi lnλ− ln(Xi!)

]

= −Nλ+ ln(λ)

N∑

i=1

Xi −
N∑

i=1

ln(Xi!)

In other words,
λ̂ = arg maxλ P (D|λ) = arg maxλ lnP (D|λ),

which can be found by taking the derivative with respect to θML = λ̂:

∂ lnL
∂λ̂

= −N +
1

λ̂

N∑

i=1

Xi,

and solving for λ̂:

−N +
1

λ̂

N∑

i=1

Xi = 0.

Resulting in:

λ̂ =

∑N
i=1Xi

N
.

To verify that this is maximum, we take the second derivative:

∂2 lnL
∂λ2

=
∂

∂λ

(
−N +

1

λ

N∑

i=1

Xi

)
= − 1

λ2

N∑

i=1

Xi < 0,

which is negative, so the result has a local maximum at λ. �

(b) Show that it is unbiased (that is, show that E[λ̂] − λ = 0). Recall that E[a + b] = E[a] + E[b]
(linearity of expectations).
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Theoretical Introduction:

Let θ be a parameter of interest and θ̂ be an estimator of θ based on a sample of size N . The bias
of θ̂ is the difference between θ and the long run average of the estimates given by θ̂, based on
different samples of size N :

bias(θ̂) = E[θ̂]− θ.

An estimator is called unbiased if bias(θ̂) = 0. A biased estimator systematically overestimates or
underestimates the value of θ.

Solution:

The estimator of the parameter θ is taking over X. We have shown that the standard estimator for
a Poisson population mean is the maximum likelihood estimator:

X̄ =
1

N

N∑

i=1

Xi = λ̂,

then

E[λ̂] = E
[ 1

N

N∑

i=1

Xi

]

=

∑N
i=1E[Xi]

N

=

∑N
i1
λ

N

=
Nλ

N
= λ,

where we have used the fact that:

E[X] =
∑

x∈Im(X)

xP (X = x)

=

N∑

i≥0
xi
λxie−λ

xi!

= λe−λ
N∑

i≥1

λxi−1

(xi − 1)!

= λe−λ
∑

j≥0

λj

j!

= λe−λeλ

= λ.

Note that in the last step we have used the Taylor expansion for the exponential, assuming that the

number of samples, N , can be taken asymptotically to be infinity: ex =
∑∞
i=0

xi

i! . Plugging the result

of E[λ̂] back into the bias equation, we show that the Poisson distribution is unbiased:

bias(λ̂) = E[λ̂]− λ = λ− λ = 0.

13
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2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter λ.

3.1 MLE and MAP estimates

It can be shown that the parameter λ is the mean of the Poisson distribution. In this part, we will estimate
this parameter from the number of packets observed per unit time X1, . . . , Xn which we assume are drawn
i.i.d from Poisson(λ).

1. [3 pts] Recall that the bias of an estimator of a parameter θ is defined to be the difference between the
expected value of the estimator and θ.

Show that λ̂ = 1
n

∑
i Xi is the maximum likelihood estimate of λ and that it is unbiased (that is, show

that E[λ̂]− λ = 0). Recall that E[a + b] = E[a] + E[b] (linearity of expectations).

2. [5 pts] Now let’s be Bayesian and put a prior distribution over the parameter λ.

Your friend in networking hands you a typical plot showing the counts of computers at a university
cluster with different average packet arrival densities (Figure 1). Your extensive experience in statistics
tells you that the plot resembles a Gamma distribution pdf. So you believe a good prior distribution
for λ may be a Gamma distribution.
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Figure 1: Just giving you some motivation. Don’t take it so seriously.

Recall that the Gamma distribution has pdf:

p(λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ > 0

Also, if λ ∼ Γ(α, β), then it has mean α/β and the mode is (α− 1)/β for α > 1. 4

Assuming that λ is distributed according to Γ(λ|α, β), compute the posterior distribution over λ.

Hint:
λ

P

Xi+α−1e−λ(n+β)

looks like a Gamma distribution! Is the rest of the expression constant with respect to λ? Working
out a messy integral can lead to the answer but shouldn’t be necessary.

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of λ under a Γ(α, β)
prior.

3.2 Estimator Bias/Variance

In class, we learned that the maximum likelihood estimator is not always unbiased. For example, we saw
that the maximum likelihood estimator for the variance of a Normal distribution,

σ̂2
MLE =

1

N

N∑

i=1

(xi − µ̂)2

4Γ(α) refers to the Gamma function, but don’t worry if you don’t know what this is - it will not be important for this
question.
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Figure 1: Just giving you some motivation. Don’t take it so seriously.

Your friend in networking hands you a typical plot showing the counts of computers at a university
cluster with different average packet arrival densities (Figure 1). Your extensive experience in statistics
tells you that the plot resembles a Gamma distribution pdf. So you believe a good prior distribution
for λ may be a Gamma distribution. Recall that the Gamma distribution has pdf:

P (λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ > 0

Also, if λ ∼ Γ(α, β), then it has mean α/β and the mode is (α− 1)/β for α > 1.2

Assuming that λ is distributed according to Γ(λ|α, β), compute the posterior distribution over λ.

Hint:

λ
∑
Xi+α−1e−λ(n+β)

looks like a Gamma distribution! Is the rest of the expression constant with respect to λ?

Solution:

We have shown above that the Bayesian formulation requires:

P (λ|y) ∝ P (λ)P (y|λ),

where P (λ) is the prior density of λ, P (y|λ) is the likelihood, and P (λ|y) is the posterior density
of λ. We have also derived the likelihood function for the Poisson distribution:

P (y|λ) =

N∏

i=1

eλλX1

Xi!

=

∏N
i=1 e

λ
∏N
i=1 λ

X1

∏N
i=1Xi!

=
eNλλ

∑N
i=1X1

∏N
i=1Xi!

.

2Γ(α) refers to the Gamma function, but don’t worry if you don’t know what this is—it will not be important for this
question.
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Now assuming that the prior distribution of λ is a Gamma function,

P (λ|α, β) =
βα

Γ(α)
λα−1e−βλ, λ > 0,

we calculate the posterior distribution over λ

P (λ|y) ∝
(

βα

Γ(α)
λα−1e−βλ

)(
e−Nλλ

∑N
i=1X1

∏N
i=1Xi!

)
=

(
βα

Γ(α)
∏N
i=1Xi!

)(
λα−1+

∑N
i=1X1e−(N+β)λ

)
.

It is clear that the function inside of the first parenthesis is a constant over λ and the data, and the
function inside the second parenthesis is a Gamma distribution with parameters α̂ = α +

∑
iXi and

β̂ = β +N . We can rewrite this result as:

P (λ|y) ∝ λα̂−1e−β̂λ =
(
λ|α+

∑

i

Xi, β +N
)

= Γ(α̂, β̂).

Finally, from the Law of probability, we can calculate the normalizing constant:
∑

λ

constant × λα+
∑

iXie−(β+N)λ = 1.

�

3. [2 pts] Derive an analytic expression for the maximum a posteriori (MAP) estimate of λ under a Γ(α, β)
prior.

Theoretical Introduction:

The maximum a posteriori (MAP) estimate can be computed in several ways. Analytically, it
can be calculated when the mode of the posterior distribution can be given in a closed form3. In
this case, the conjugate priors are used, as for example, for the Poisson distribution, which has the
Gamma distribution as its conjugate prior.

The mode is the point where the probability distribution has the highest probability, and in the case
of a Gamma function it is given by:

Γ(α, β) =
α− 1

β
,

for α > 1.

Solution:

For our problem, we see that if α was greater than 1, α̂ = α+
∑N
x=1Xi would also be greater than 1. The

MAP estimation is then the mode of the posterior distribution, i.e., the mode of Γ(
∑
iXi+α,N +β) :

mode =
α− 1

β
=

∑
iXi + α− 1

N + β
.

�

3A closed-form expression is an expression that can be written analytically in terms of a finite number of certain well-known
functions.
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3.2 Estimator Bias/Variance [10 points]

The maximum likelihood estimator is not always unbiased. For example, the maximum likelihood estimator
for the variance of a Normal distribution,

σ̂2
MLE =

1

N

N∑

i=1

(xi − µ̂)2

is biased - and that an unbiased estimator of variance is:

σ̂2
unbiased =

1

N − 1

N∑

i=1

(xi − µ̂)2

For the Normal distribution, these estimators give similar results for large enough N , and it is unclear
whether one estimator is preferable to the other. In this problem, we will explore an example in which the
maximum likelihood estimate is dramatically superior to any unbiased estimator.

We will again be interested in the Poisson distribution, but instead of estimating the parameter λ, we will
estimate a nonlinear function of λ, namely η = e−2λ from a single sample X ∼ Poisson(λ).

1. [3 pts] Let η̂ = e−2X . Show that η̂ is the maximum likelihood estimate of η.

Solution:

We calculate the MLE estimation in the same way we did in the previous item, but now setting X the
distribution parameter to λ(η):

e−2λ → η

e2λ = η−1

2λ = − ln η

λ(η) = −1

2
ln η.

Plugging λ(η) back to the Poisson distribution equation:

P (X|λ(η)) =
λ(η)Xe−λ(η)

X!

=
1

X!

(
− 1

2
ln η
)X

e
1
2 ln η.

We take the log:

lnP (X|λ(η)) = X ln(−1

2
ln η) +

1

2
ln η − ln(X!),
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and then we find the minimum by setting the first derivative (with respect of η) to zero:

∂ lnP (X|η̂)

∂η̂
= 0

X
1

− 1
2 ln η̂

−1

2η̂
+

1

2η̂
= 0

X

η̂ ln η̂
= − 1

2η̂

−2X = ln η̂

η̂ = e−2X .

This result also can be proved by using the fact that the MLE is invariant under functional transfor-
mations. That is, if λ̂ is the MLE of λ and if η(λ) is a function of λ, then η(λ̂) is the MLE of η(λ).
�

2. [4 pts] Show that the bias of η̂ is e−2λ − eλ(1/e2−1).
The following identity from Taylor expansion may be useful:

et =

∞∑

n=0

tn

n!

Solution:

Recalling that bias(η̂) = E[η̂] − η, we calculate E[η̂] as we did before(i.e., using Taylor series for the
exponential):

E[η̂] =
∑

X≥0
η̂P (X)

=
∑

X≥0
e−2X

λXe−λ

X!

= e−λ
∑

X≥0

(λe−2)X

X!

= e−λeλe
−2

= e(e
−2−1)λ.

The bias is:

bias(η̂) = E[η̂]− η = e(e
−2−1)λ − e−2λ.

�

3. [3 pts] It turns out that (−1)X is the only unbiased estimate of η. Prove that it is indeed unbiased
and briefly explain why this is a bad estimator to use. It may be instructive to plot the values of the
MLE and unbiased estimate for X = 1, ..., 10.
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Solution:

Performing the same calculations as before, assuming η̂ = (−1)X :

E[η̂] =
∑

X≥0
η̂P (X)

=
∑

X≥0
(−1)X

λXe−λ

X!

= e−λ
∑

X≥0

(−λ)X

X!

= e−λe−λ

= e−2λ.

The bias is zero:

bias(η̂) = E[η̂]− η = e−2λ − e−2λ = 0.

Figure 2: Left: The oscillatory behavior of η̂ = (−1)X . Right: η̂ = e−2X

The bias is zero: The main characteristic of this estimator is that it will oscillate between negative and
positive values, depending on whether X is even or odd, i.e., it is extremely dependent of the data.
Second, since we are dealing with probabilities, every time X is odd and η̂ takes negative values, the
probability can be ill-defined. �
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4 Regression [20 points]

4.1 Linear Models [12 points]

Suppose that you have a software package for linear regression. The linear regression package takes as input
a vector of responses (Y ) and a matrix of features (X), where the entry Xi,j corresponds to the ith data
point and the jth feature for that data point and Yi is the ith response of the function. The linear regression
package returns a vector of weights w that minimizes the sum of squared residual errors. The jth entry of
the vector, wj is the weight applied to the jth feature.

For the following functions Gi of the input vector Ci, you should

EITHER

• specify how the response and features (Yi and Xi,j) are calculated for the regression software package

• specify how parameters α can be obtained from the values returned by the regression software package
w so that α is the maximum likelihood estimate

OR

• provide your reasoning for why the software can not be employed

Example. Given the function Gi =
∑3
j=0 αjC

j
i,1 + εi = α0 + α1Ci,1 + α2C

2
i,1 + α3C

3
i,1 + εi where Ci,1

is the first component of Ci and εi ∼ N(0, σ2), by setting: Xi,j ← Cji,1 for j = {0, 1, 2, 3} and Yi ← Gi
for each i, the software package then returns w∗ = argmin

∑
i(yi − w0 − w1xi,1 − w2xi,2 − w3xi,3)2 =

argmin
∑
i(Gi −

∑3
j=0 wjC

j
i,1)2. αj ← wj then is the MLE for each αj for j = {0, 1, 2, 3}.

Theoretical Introduction:

In linear regression, we have a training set of N observations, x = (x1, .., xN )T , together with the
corresponding values of the target vector, t = (t1, ..., tN )T . The goal is to exploit this training set to
make predictions of the value t̂ of the target variable for some new x̂ of the input variable. The data is also
corrupted with noise.

We solve the curve fitting problem choosing the value of w for which E(w) is small as possible. The
error function is a quadratic function on w, having derivatives linear in w, so that the minimization of the
error function has a unique solution, denoted by w∗ (which can be found in closed form). The resulting
polynomial is given by y(x,w∗).

1. [2 pts] Gi = α1C
2
i,1e

Ci,2 + εi where Ci,2 is the second component of Ci and εi ∼ N(0, σ2).

Solution:

Following the example, we set the response to

Yi ← Gi ,

and the feature to

Xi,1 ← C2
i,1e

Ci,2 ,
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for each i, where Ci,1 and Ci,2 are the first and second components of the input vector Ci, respectively.
The software will return

w∗ = argmin
∑

i

(yi − w1xi,1),

so that the maximum likelihood estimate is

α1 ← w1 .

�

2. [2 pts] Gi = α1C
2
i,1e

Ci,2 + εi + γi where εi ∼ N(0, σ2
1) and γi ∼ N(µ, σ2

2). Here µ is the unknown bias
and must be estimated.

Solution:

We now have the unknown bias to be estimated. Using the theory from the next exercise for Gaussians
with different variances, we will use the first weight, w0, assuming that Xi,0 ← 1. In this case we set
the response to

Yi ← Gi ,

and the features to

Xi,0 ← 1, Xi,1 ← C2
i,1e

Ci,2,

for each i, where Ci,1 and Ci,2 are the first and second components of the input vector Ci, respectively.
The software will return

w∗ = argmin
∑

i

(yi − w0xi,0 − w1xi,1),

so that the maximum likelihood estimate are

µ← w0,

and
α1 ← w1.

�

3. [2 pts] Gi =
∑
j αjfj(Ci)+ εi where fj(Ci) are known basis functions calculated using the input vector

Ci and εi ∼ N(0, σ2)

Solution:

This case is similar to the example, except that now fj(Ci) are basis functions and the dimension of
the data is not given. In this case, the response is set to

Yi ← Gi ,

and the feature is set to
Xi,1 ← fj(Ci) ,

for each i. The software will return

w∗ = argmin
∑

i

(yi −
∑

j

wjxi,j),
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so the maximum likelihood estimates are

αj ← wj .

�

4. [2 pts] Gi =
∑
j α(j%5)fj(Ci) + εi where “%” is the modulo operator and εi ∼ N(0, σ2)

Solution:

In this example we also have basis functions to the input vectors. First, the response is set to

Yi ← Gi .

This time the parameters αj are divide in five sets, for all possible values returned in the j%5 operation,
i.e., j = 0, 1, 2, 3, 4. To use them for the maximum likelihood estimates, we incorporate these sets into
the basis functions so the features are

Xi,j ←
∑

j

fj%5(Ci).

The software will return
w∗ = argmin

∑

i

(yi −
∑

j

wjxi,j),

so the maximum likelihood estimate is
αj ← wj .

�

5. [2 pts] Gi =
∑
j αjfj(Ci|θ) + εi where θ is a real valued unknown parameter in the basis functions and

εi ∼ N(0, σ2). You need to estimate both α and θ.

Solution:

In this case the software should not be employed. Since this is a linear regression software, it only
works for models that are a linear combination of their parameters (i.e., linear in θ and α). Since we
do not know the form of the basis functions, they could be non-linear in θ. �

6. [2 pts] eGi = γi[
∏
fj(Ci)

αj ] where γi ∼ logNormal(0, σ2) and the range of fj is positive.4

Solution:

To solve this problem, we apply the log function for both sides:

ln eGi = ln

[
γi
∏

fj(Ci)
αj

]

Gi = ln γi +
∑

j

αj ln fj(Ci),

4The log-Normal distribution is the distribution of a random variable whose logarithm is normally distributed.
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where ln γi ∼ N(0, σ2). The response is:

Yi ← Gi .

The features are
Xi,j ← ln fj(Ci).

The software will return
w∗ = argmin

∑

i

(yi −
∑

j

wjxi,j),

so the maximum likelihood estimate is
αj ← wj .

�

4.2 Weighted Least Squares [8 points]

Given instances < xi, ti > generated from the linear regression model

t(x) =
∑

i

wihi(xj) + εj ,

the least squares estimate for the coefficient vector w is given by

w∗ = (HTH)−1HT t.

If ε1, ..., εn are independent Gaussian with mean 0 and constant standard deviation, the least squares estimate
is also the MLE. In the first three questions, assume that ε1, ..., εn are independent Gaussian with mean 0,
but the variances are different, i.e. Variance(εi)= σ2

i .

1. [1 pts] Give the formulation for calculating the MLE of w.

Solution:

From class, models with different variances (i.e., different ε1, ..., εn), have conditional likelihood for the
data is given by:

P (D|w, σ) =

N∏

j=1

1√
2π · σj

exp

(
−

(
tj −

∑
i wihi(xj)

)2

2σ2
j

)
.

Taking the log-likelihood, we have:

ln
(
P (D|w, σ)

)
= ln

(
1

σ
√

2π

)N
ln

(
N∏

j=1

exp
(
−

(
tj −

∑
i wihi(xj)

)2

2σ2
j

))

= C−
R∑

j=1

(
tj −

∑
i wihi(xj)

)2

2σ2
j

.
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Finally, the MLE of w is:

w∗ = argminw

R∑

j=1

(
tj −

∑
i wihi(xj)

)2

2σ2
j

.

�

2. [2 pts] Calculate the MLE of w.

Solution:

(a) We set Σ as the diagonal matrix, with diagonal elements σ2
1 , .., σ

2
N .

(b) We set M as the number of basis functions.

(c) We set H as the N ×M matrix, with Hji = hi(xj) elements.

(d) We set w as the M × 1 vector, where the ith element is wi.

(e) We set t as the N × 1 vector, where the jth element is tj .

(f) Thus (as shown in class):

N∑

j=1

(
tj −

∑
i wihi(xj)

)2

2σ2
j

=
1

2
(t−Hw)TΣ−1(t−Hw).

(g) Now, taking the derivative with respect to w gives:

−HTΣ−1(t−Hw) = 0,

(h) Recovering w∗, the MLE of w:

w∗ = (HTΣ−1H)−1(HTΣ−1t).

�

3. [2 pts] Explain why the MLE of w can also be obtained by weighted least squares, i.e. w∗ is obtained
by minimizing the weighted residual squared error

∑
j aj(tj −

∑
i wihi(xj))

2, where aj is the weights.
Give the weights aj .

Solution:

With the results in the item (1):

w∗ = argminw

N∑

j=1

(
tj −

∑
i wihi(xj)

)2

2σ2
j

,
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we set αj = 1
2σ2

j
, so that the MLE is obtained by minimizing the weighted residual squared error:

N∑

j=1

αj

(
tj −

∑

i

wihi(xj)
)2
.

�

4. [2 pts] If ε1, ..., εn are independent Laplace with mean 0 and the same scale parameter b, i.e., the pdf

of εi is fεi(x) = 1
2bexp(−

|x|
b ), give the formulation for calculating the MLE for w (closed form solution

is not required).

Solution:

Using the same logic as before, the conditional data likelihood is given by:

P (D|w, σ) =

N∏

j=1

1

2b
exp

(
−|tj −

∑
i wihi(xj)|
b

)
.

The log of this likelihood is:

lnP (D|w, σ) = C−
N∑

j=1

|tj −
∑
i wihi(xj)|
b

,

where C is a constant. Finally, the MLE of w is given by:

w∗ = argmaxw

N∑

j=1

|tj −
∑
i wihi(xj)|
b

= argmaxw

N∑

j=1

|tj −
∑

i

wihi(xj)|.

�

5. [1 pts] Sometimes the model in the last question is preferred because its solution tends to be more
robust to noise. Explain why this is true.

Solution:

If the data has noise, this will result in large residuals. In this case, squared models (εj given by a
Gaussian distribution) have larger residuals than linear models (εj with Laplace distribution), therefore,
the former would be less robust. �
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5 Decision Trees [20 points]

5.1 ID3 and KL Divergence [7 points]

Consider the following set of training examples for the unknown target function < X1, X2 >→ Y . Each row
indicates the values observed, and how many times that set of values was observed. For example, (+, T, T )
was observed 3 times, while (−, T, T ) was never observed.

Y X1 X2 Count
+ T T 3
+ T F 4
+ F T 4
+ F F 1
- T T 0
- T F 1
- F T 3
- F F 5

Table 1: Training data

1. [2 pts] Compute the sample entropy H(Y ) for this training data (with logarithms base 2)?

Theoretical Introduction:

A measure of information content called self-information of a message m is given by:

I(m) = lg
( 1

p(m)

)
= −lg(p(m)),

where p(m) = Pr(M = m) is the probability that the message m is chosen from all possible choices
in the message space M . The entropy of a discrete message space M is a measure of the amount of
uncertainty one has about which message will be chosen, and it is defined as the average self-information
of a message m from that message space. In probability language, the entropy of a random variable x
is then defined as5

H[x] = −
∑

x

p(x) lg p(x).

Solution:

The sample entropy is then:

H(Y ) = −
k∑

i=1

p(Y = yi) lg p(Y = yi)

= −p− lg p− − p+ lg p+

= −4

7
lg

4

7
− 3

7
lg

3

7
≈ 0.98523

5We could express the entropy in any logarithm basis, they would be up to a constant. We choose logarithm base 2,
represented by lg.
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�

2. [3 pts] What are the information gains IG(X1) and IG(X2) for this sample of training data?

Theoretical Introduction:

Given entropy as a measure of the impurity in a collection of training examples, we define a measure
of the effectiveness of an attribute in classifying the training data. The measure is called information
gain and is the expected reduction in entropy caused by partitioning the examples according to this
attribute:

Gain(S,A) ≡ Entropy(S)−
∑

v∈{A}

Sv
S

Entropy(Sv).

For this case we can express the information gain based on X1 by computing the entropy of Y after a
split on X1, given by H(Y |X1):

IG(X1) ≡ H(Y )−H(Y |X1) .

The same thing for X2:

IG(X2) ≡ H(Y )−H(Y |X2).

Solution:

Since H(Y ) was already calculated in the item above, we need to find H(Y |X1) and H(Y |X2). For
this, we first calculate all the probabilities:

p(X1 = T ) =
8

21

p(X1 = F ) =
13

21

p(Y = +|X1 = T ) =
7

8

p(Y = +|X1 = F ) =
5

13

p(Y = −|X1 = T ) =
1

8

p(Y = −|X1 = F ) =
8

13
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and

p(X2 = T ) =
10

21

p(X2 = F ) =
11

21

p(Y = +|X2 = T ) =
1

10

p(Y = +|X2 = F ) =
5

11

p(Y = −|X2 = T ) =
3

10

p(Y = −|X2 = F ) =
6

11

Now we are able to calculate the conditional entropies:

H(Y |X1) = −
v∑

j=1

p(X1 = xj)

k∑

i=1

p(Y = yi|X1 = xj) lg p(Y = yi|X1 = xj)

= −p(X1 = T )

(
p(Y = +|X1 = T ) lg p(Y = +|X1 = T ) +

+p(Y = −|X1 = T ) lg p(Y = −|X1 = T )

)
−

−p(X1 = F )

(
(p(Y = +|X1 = F ) lg p(Y = +|X1 = F ) +

+p(Y = −|X1 = F ) lg p(Y = −|X1 = F )

)

= −8/21

(
7

8
lg

7

8
+

1

8
lg

1

8

)
− 13

21

(
5

13
lg

5

13
+

8

13
lg

8

13

)

≈ 0.802123

and

H(Y |X2) = −
v∑

j=1

p(X2 = xj)

k∑

i=1

p(Y = yi|X2 = xj) lg(Y = yi|X2 = xj)

= −p(X2 = T )

(
p(Y = +|X2 = T ) lg p(Y = +|X2 = T )

+p(Y = −|X2 = T ) lg p(Y = −|X2 = T )

)

−p(X2 = F )

(
(p(Y = +|X2 = F ) lg p(Y = +|X2 = F )

+p(Y = −|X2 = F ) lg p(Y = −|X2 = F )

)

= −10/21

(
7

10
lg

7

10
+

3

10
lg

3

10

)
− 11

21

(
5

11
lg

5

11
+

6

11
lg

1

13

)

≈ 0.9403448
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Resulting in:

IG(X1) = H(Y )−H(Y |X1)

≈ 0.98523− 0.802123

≈ 0.183107

and

IG(X2) = H(Y )−H(Y |X2)

≈ 0.98523− 0.9403448

≈ 0.044885

Therefore
IG(X2) < IG(X1).

�

3. [2 pts] Draw the decision tree that would be learned by ID3 (without postpruning) from this sample
of training data.

Solution:

To build the decision tree we start by finding the attribute X with highest information gain. In this
case, it is IG(X1) ≈ 0.1831, so our first split will be on feature X1.

Now we need to look to the left and right branches. Since splitting on X2 results in two nodes with
non-zero values, we split both branches. The final decision tree can bee seen in Fig. 3. �

5.2 Information Gain and Entropy [5 points]

When we discussed learning decision trees in class, we chose the next attribute to split on by choosing the
one with maximum information gain, which was defined in terms of entropy. To further our understanding
of information gain, we will explore its connection to KL-divergence, an important concept in information
theory and machine learning. For more on these concepts, refer to Section 1.6 in Bishop.

The KL-divergence from a distribution p(x) to a distribution q(x) can be thought of as a measure of dissim-
ilarity from P to Q:

KL(p||q) = −
∑

p(x) log2
q(x)

p(x)

We can define information gain as the KL-divergence from the observed joint distribution of X and Y to the
product of their observed marginals.

IG(x, y) ≡ KL (p(x, y)||p(x)p(y)) = −
∑

x

∑

y

p(x, y) log2

(
p(x)p(y)

p(x, y)

)

When the information gain is high, it indicates that adding a split to the decision tree will give a more
accurate model.
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Figure 3: Learned decision tree.

1. [3 pts] Show that definition of information gain above is equivalent to the one given in class. That
is, show that IG(x, y) = H[x] − H[x|y] = H[y] − H[y|x], starting from the definition in terms of
KL-divergence.

Solution:

Using the definitions above, the formula for conditional probability, and the fact that the sum of the
probabilities of all the outcomes in a sample space is equal to one, we have:

KL(p(x, y)||p(x)p(y)) =
∑

x

∑

y

p(x, y) lg

(
p(x)p(y)

p(x, y)

)

=
∑

x

∑

y

p(x, y)
(

lg p(x) + lg p(y)− lg p(x, y)
)

=
∑

x

∑

y

p(x, y)
(

lg p(x) + lg p(y)− lg p(y|x)− lg p(x)
)

=
∑

x

p(x|Y )
∑

y

p(y) lg p(y) +
∑

x

p(x)
∑

y

p(y|x) lg p(y|x)

= H(y)−H(y|x)

The same derivation can be used to prove that H(x) − H(x|y), using the fact that p(x)p(y|x) =
p(y)p(x|y). �
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2. [2 pts] In light of this observation, how can we interpret information gain in terms of dependencies
between random variables? A brief answer will suffice.

Solution:

The relative entropy or Kullback-Leibler divergence between two distributions is a measure of
the distance between the two distributions. The joint distribution between two sets of variables, X
and Y is given by p(x, y). If the sets of variables are independent, their joint distribution will factorize
to the product of their marginals p(X,Y ) = p(X)p(Y ). If the variable are not independent, we gain
some idea of they are closer to being independent by considering the KL distance between the joint
distribution and the product of marginals.

This mutual information is related to the conditional entropy as shown above, so we can see the
mutual information as the reduction in the uncertainty about X by knowing the value of Y (and vice
versa). In other words, the information gain measures the distance between the joint distribution of X
and Y and the product distribution, resulting on how far X and Y are from being independent (and
resulting in the extreme value 0 if they are independent). �

5.3 Consistent Trees [8 points]

We know that a tree with lower complexity will tend to have better generalization properties. So one (rather
simplistic) option to help avoid overfitting is to find the simplest tree that fits the data. This follows the
principle known as Occam’s Razor. One simple way to define “simplest” is based on the depth of the tree.
Specifically, the depth is the number of nodes along the longest root-to-leaf path. For example, the tree from
part 1 would have depth 2. In this problem, we will be interested in learning the tree of least depth that fits
the data.

Suppose the training examples are n-dimensional boolean vectors, where n > 2 is some constant integer.
(For example (T, F, F, T, T ) is a 5 dimensional boolean vector). We know that the ID3 decision tree learning
algorithm is guaranteed to find a decision tree consistent6 with any set of (not self-contradicting) training
examples, but that doesn’t necessarily mean it will find a short tree.

1. [4 pts] For n = 3, does ID3 always find a consistent decision tree of depth ≤ 2 if one exists? If so,
prove it. If not, provide a counterexample (a set of examples, similar to Table 1 above, but with 3
variables), with an explanation.

Solution:

We do not always find a consistent decision tree of smaller depth. For example, let’s look to the table
below, which adds a third feature to the Table 2:

We show two possible decision trees in the Figs. 4. In the first case, the tree splits on X3 as the root,
and since we need both X1 and X2, the tree has depth 3. In the second case, the tree splits on X1 as
the root split, and since X3 does not add any additional information (the predictions do not change if
we add a rule on X3), we only need X2 to be have a consistent tree. �

6A “consistent” tree is one with zero training error.
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Y X1 X2 X3 Count
+ T T T 2
+ T T F 0
+ T F T 1
+ T F F 1
+ F T T 1
+ F T F 1
+ F F T 2
+ F F F 0
- T T T 4
- T T F 0
- T F T 0
- T F F 0
- F T T 0
- F T F 0
- F F T 4
- F F F 0

Table 2: Training data with three features.

2. [4 pts] Propose your own learning algorithm that finds a shortest decision tree consistent with any set
of training examples (your algorithm can have running time exponential in the depth of the shortest
tree). Give the pseudocode and a brief explanation.

Solution:

We suppose the data is given as an array of the rows of the above training data:

data = [[+, T, T, T, 2], [+, T, T, F, 0]....]],

i.e., data[0] is the first row, data[1] is the second row, data[15] is the last row. Also, data[0][0] = +,
data[0][1] = T (X1 in the first row), and data[0][4] = 2 (the number of counts). The algorithm bellow
has two recursive calls and only two loops, so the recurrence is bellow super-exponential (in case we
had to search for all the depths of the tree):

main(data):

# find number of attributes

nX = len(data[0])-2

m = 0

while m < = nX:

tree = findShortest(data, m, nX)

if != tree:

m += 1

return tree or False

findShortest(data, m, nX):

# Base case:

if m == 0:

Inspect all data subsets, if labels are equal, return leaf with label

else:

return False
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Figure 4: An ID3 tree with three features. (Left) The training data in a depth 3 ID3, with X3 as the root.
(Right) Shows the same training data, in a consistent ID3 tree, with depth 2 by splitting on X1.

for att in (nX):

# find the subsets the attributes are T, F and have counts:

data-T =[data[:][att + 1], data[:][nX-1] where data[:][att + 1] == True and

data[:][nX-1] != 0]

data-F = [data[:][att + 1], data[:][nX-1] where data[:][att + 1] == False and

data[:][nX-1] != 0]

tree-left = findShortest(data-T, m-1, nX)

tree-right = findShortest(data-F, m-1, nX)

if tree-left and tree-right:

# return tree with split in this attribute, and subroots found above:

return tree(attribute, tree-left, tree-right)

# In case the above failed:

return False

�
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6 Naive Bayes vs Logistic Regression [20 points]

In this problem you will implement Naive Bayes and Logistic Regression, then compare their performance
on a document classification task. The data for this task is taken from the 20 Newsgroups data set7, and
is available at http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hw1-data.tar.gz. The
included README.txt describes the data set and file format.

Our Naive Bayes model will use the bag-of-words assumption. This model assumes that each word in a
document is drawn independently from a multinomial distribution over possible words. (A multinomial
distribution is a generalization of a Bernoulli distribution to multiple values.) Although this model ignores
the ordering of words in a document, it works surprisingly well for a number of tasks. We number the words
in our vocabulary from 1 to m, where m is the total number of distinct words in all of the documents.
Documents from class y are drawn from a class-specific multinomial distribution parameterized by θy. θy is
a vector, where θy,i is the probability of drawing word i and

∑m
i=1 θy,i = 1. Therefore, the class-conditional

probability of drawing document x from our Naive Bayes model is P (X = x|Y = y) =
∏m
i=1(θy,i)

counti(x),
where counti(x) is the number of times word i appears in x.

1. [5 pts] Provide high-level descriptions of the Naive Bayes and Logistic Regression algorithms. Be sure
to describe how to estimate the model parameters and how to classify a new example.

Solution:

Naive Bayes

The Naive Bayes algorithm is a classification algorithm based on the Bayes rule, that assume the
attributes X1...Xn to be all conditionally independent of each other given Y . Assuming that Y is
any discrete-valued variable, and the attributes X1...Xn are any discrete or real-valued attributes, the
algorithm to train a classifier that will output the probability distribution over possible values of Y ,
for each new instance X, is:

P (Y = yk|X1...Xn) =
P (Y = yk)

∏
i P (Xi|Y = yk)∑

j P (Y = yj)
∏
i P (Xi|Y = yj)

.

In other words, given a new Xnew, this equation will calculate the probability that Y will take on
any given value, given the observed attribute values of Xnew and the given distributions P (Y ) and
P (Xi|Y ).

The most probable value of Y is given by:

Y ← argmax yk
P (Y = yk)

∏

i

P (Xi|Y = yk).

We can summarize the Naive Bayes learning algorithm by describing the parameters to be estimated.
When the n input attributes Xi take on J possible values, and Y is a discrete variable taking on K
possible values, then the learning correspond to estimate two set of parameters:

θijk = P (Xi = xijk|Y = yk),

for each input Xi, each of its possible values xij , and each of possible values yk of Y; and:

πk = P (Y = yk),

7Full version available from http://people.csail.mit.edu/jrennie/20Newsgroups/
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the prior probability over Y . We can estimate these parameters using maximum likelihood esti-
mates for θijk given a set of training examples D:

θ̂ijk = P̂ (Xi = xij |Y = yk) =
#D(Xi = xij ∧ Y = yk)

#D(Y = yk)
,

where #D returns the number of elements in set D with property x (without smoothing). The max-
imum likelihood estimate for π̂k is (without smoothing):

π̂k = P̂ (Y = yk) =
#D(Y = yk)

|D| .

Logistic Regression

Logistic regression is an approach to learning functions of the form P (Y |X), in the case where
Y is discrete-valued, and X is a vector containing discrete or continuous values. Logistic Regression
assumes a parametric form for the distribution P (Y |X), then directly estimates its parameters from
the training data. The parametric model in case where Y is boolean is:

P (Y = 0|X) =
1

1 + exp(w0 +
∑n
i=1 wiXi)

,

and

P (Y = 1|X) =
exp(w0 +

∑n
i=1 wiXi)

1 + exp(w0 +
∑n
i=1 wiXi)

.

To classify any given X we assign the value yk that maximizes P (Y = yk|X). In other words, we assign
the label Y = 1 if the following conditions holds:

1 <
P (Y = 0|X)

P (T = 1|X)

1 < exp(w0 +

N∑

i=1

wiXi)

0 < w0 +

N∑

i=1

wiXi,

where we took the log in the last line. We assign Y = 0 otherwise.

One approach to training Logistic Regression is to choose parameter values that maximize the con-
ditional data likelihood, which is the probability of the observed Y values in the training data,
conditioned on their corresponding X values. We choose parameters W that satisfy

W ← arg maxw
∏

l

P (Y l|X l,W ),

where W is the vector of parameters to be estimated; Y l denotes the observed value of Y in the lth
training example; and X l is the observed value of X in the lth training example. The conditional
data log likelihood is then:

l(W ) =
∑

l

Y l lnP (Yl = 0|X l,W ) + (1− Y l) lnP (Y l = 1|X l,W ),

=
∑

l

Y l(w0 +

n∑

i

wiX
l
i)− ln(1 + exp(w0 +

n∑

i

wiX
l
i)).
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where Y can only be 0 or 1.

Since there is no closed form solution to maximizing l(W ) with respect to W , we use the gradient
ascent (vector of partial derivatives). Beginning with initial weights of zero, we can repeatedly update
the weights in the direction of the gradient, on each iteration changing every weight wi according to:

wi ← wi + η
∑

l

X l
i

(
Y l − P̂ (Y l = 1|X l,W )

)
,

where η is a small constant for the step size.

Naive Bayes vs. Logistic Regression

Naive Bayes, a generative classifier, directly estimates parameters for P (Y ) and P (X|Y ), i.e., it
optimizes the joint data likelihood P (X|Y ) with respect to the conditional independence assumptions.
Logistic Regression, a discriminative classifier, directly estimates the parameters of P (Y |X),
i.e., the conditional data likelihood P (Y given X). Other differences are:

• Naive Bayes makes more restrictive assumptions and has higher asymptotic error, but converge
faster than Logistic Regression (O(lnn) vs. O(n)).

• Naive Bayes is a learning algorithm with greater bias, but lower variance than Logistic Regression.

• Logistic Regression is consistent with the Naive Bayes assumption that the input features Xi

are conditionally independent given Y . However, the data can disobey this assumption. The
conditional likelihood maximization algorithm for Logistic Regression will adjust its parameters
to maximize the fit to the data.

�

2. [3 pts] Imagine that a certain word is never observed in the training data, but occurs in a test instance.
What will happen when our Naive Bayes classifier predicts the probability of the this test instance?
Explain why this situation is undesirable. Will logistic regression have a similar problem? Why or why
not?

Solution:

In Naive Bayes, if the training data does not contain a certain word, the maximum likelihood estimates
defined above can result in θ estimates of zero. These features will be assigned zero probability, since
they were not present in the training data but occur in the test data. However, zero probability should
not be assigned to any event in the feature space. To prevent this, we employ Laplace smoothing.
Furthermore, Logistic regression will not have the same problem because it is directly parametrized by
the logit functions, not generated by the estimates parameters for P (Y ) and P (X|Y ).

Add-one smoothing is one way to avoid this problem with our Naive Bayes classifier. This technique
pretends that every word occurs one additional time in the training data, which eliminates zero counts
in the estimated parameters of the model. For a set of documents C = x1, ..., xn, the add-one smoothing

parameter estimate is θ̂i =
1+

∑n
j=1 counti(x

j)

D+m , where D is the total number of words in C (i.e., D =∑m
i=1

∑n
j=1 counti(x

j)). Empirically, add-one smoothing often improves classification performance
when data counts are sparse.
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3. [10 pts] Implement Logistic Regression and Naive Bayes. Use add-one smoothing when estimating the
parameters of your Naive Bayes classifier. For logistic regression, we found that a step size around
.0001 worked well. Train both models on the provided training data and predict the labels of the test
data. Report the training and test error of both models.

Solution:

Naive Bayes Logistic Regression
Training Accuracy 0.98 1.00
Test Accuracy 0.75 0.70

4. [2 pts] Which model performs better on this task? Why do you think this is the case?

Solution:

Naive Bayes performed slightly better. Logistic Regression outperforms Naive Bayes when many
training examples are available, but Naive Bayes outperforms Logistic Regression when training data
is scarce (which is the case of this example). �
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CSE 512 Machine Learning: Homework 2

Department of Computer Science
Stony Brook University

• There are 4 questions on this assignment. The first question involves coding. Do not attach your code
to the writeup. Instead, zip and submit your code electronically on Blackboard (Bb). Name your .zip
file as [your SBU name].zip, e.g. sbillah.zip

• The assignment is due at 5:30 PM (beginning of class) on Tuesday Mar 11, 2014.

• Do not forget to put both your name and SBU ID on each page of your submission.

• If you have any questions, please direct your question first to the TA, then the instructor.

1 Boosting [45 points]

The details of Adaboost are in Robert E. Schapire. The boosting approach to machine learning: An overview.
In Nonlinear Estimation and Classification. Springer, 2003. http://www.cs.princeton.edu/~schapire/

uncompress-papers.cgi/msri.ps

1.1 [10 Points] Combination of Weak Classifiers

In this problem, we are going to show that any linear combination of classifiers can be good in maintaining
a constant exponential loss on the input data.

Suppose we have a Boosting algorithm where ht ∈ H from t = 1, . . . , T be any sequence of classifiers. Let
{xi, yi}mi=1 be a training set of m observations. Starting with f0 = 0, ft is defined as ft = ft−1 + αtht and
αt = β log 1−εt

εt
. Here, ε is the weighted training error of the classifier ht which is defined as follows:

εt =

m∑

i=1

Dt−1(i)I(yi 6= ht(xi))

where I(.) is an indicator function, Dt−1(i) is the weight of data point i at t− 1, and

Dt+1(i) =
Dt(i) exp (− 1

βαtyiht(xi))

Zt

Now, for all T , prove that :
m∑

i=1

1

m
exp(− 1

β
yifT (xi)) = 1

1.2 [5 points] Loss Function

By this time, we know that the goal of boosting is to solve the following optimization problem:

min
f

N∑

i=1

L(yi, f(xi))

1
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and L(y, ŷ) is some loss function, and f is assumed to be an adaptive basis function model (ABM), which is
a model of the form

f(x) = w0 +

M∑

m=1

wmφm(x)

Common choices for the loss functions are given as follows: (i) squared error, (yi−f(xi))
2 (ii) absolute error,

|yi − f(xi)|, (iii) exponential loss, exp(−(ỹif(xi))), and (iv) logloss, log(1 + exp(−ỹif(xi))).

1. (2 point) Mention whether it is a good idea or a bad idea: for binary classification, absolute error or
0/1 loss is the perfect choice. Justify your answer.

2. (3 points) Consider the exponential error function E defined as follows:

E =

m∑

i=1

exp(−(ỹifT (xi)))

where fT (x) is a classifier defined in terms of a linear combination of base classifiers yt(x) of the form

fT (x) =
1

2

T∑

t=1

αtyt(x)

and ỹi ∈ {−1,+1} are the training set target values. Show that E, which is minimized by the AdaBoost
algorithm, does not correspond to the log-likelihood of any well-behaved probabilistic model.
Hint: show that the corresponding conditional distribution p(ỹ|x) cannot be correctly normalized.

1.3 [5 Points] Adaboost on a Toy Dataset

Now we will apply Adaboost to classify a toy dataset. Consider the following dataset in Figure 1a). The
dataset consists of 4 points , (X1 : 0,−1,−), (X2 : 1, 0,+), (X3 : −1, 0,+) and (X4 : 0, 1,−).

!1.5 !1 !0.5 0 0.5 1 1.5
!1.5

!1

!0.5

0

0.5

1

1.5

!1.5 !1 !0.5 0 0.5 1 1.5
!1.5

!1

!0.5

0

0.5

1

1.5

Figure 1: a) Toy data in Question 1. b) h1 in Question 1

1. Use simple decision stumps as weak classifiers. (For description of decision stumps, refer to Problem
1.4) Now for T = 4, show how Adaboost works for this dataset. For each timestep remember to
compute the following numbers:

εt, αt, Zt, Dt(i) ∀i,
Also for each timestep draw your weak classifier. For example h1 can be as shown in 1b).

2. What is the training error of Adaboost?
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3. Is the above dataset linearly separable? Explain why Adaboost does better than a decision stump in
the above dataset.

1.4 [25 Points] Implementation

Implement the AdaBoost algorithm (page 658 in the Bishop’s book) using a decision stump as the weak
classifier.

AdaBoost trains a sequence of classifiers. Each classifier is trained on the same set of training data (xi, yi),
i = 1, . . . ,m, but with the significance Dt(i) of each example {xi, yi} weighted differently. At each iteration, a
classifier, ht(x)→ {−1, 1}, is trained to minimize the weighted classification error,

∑m
i=1Dt(i)·I(ht(xi) 6= yi),

where I is the indicator function (0 if the predicted and actual labels match, and 1 otherwise). The overall pre-

diction of the AdaBoost algorithm is a linear combination of these classifiers, HT (x) = sign(
∑T
t=1 αtht(x)).

Note: The textbook uses wi ≡ Dt(i).

A decision stump is a decision tree with a single node. It corresponds to a single threshold in one of the
features, and predicts the class for examples falling above and below the threshold respectively, ht(x) =
C1I(xj ≥ c) + C2I(xj < c), where xj is the jth component of the feature vector x. Unlike in class, where
we split on Information Gain, for this algorithm split the data based on the weighted classification accuracy
described above, and find the class assignments C1, C2 ∈ {−1, 1}, threshold c, and feature choice j that
maximizes this accuracy.

1. (15 points) Submit your (zipped) code electronically on Bb. Name your file [your SBU name].zip,
e.g. sbillah.zip. You do not need to include a hard copy of your code along with your HW submission.

2. Evaluate your AdaBoost implementation on the Bupa Liver Disorder dataset that is available for down-
load from http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hw2-data.tar.gz. The
classification problem is to predict whether an individual has a liver disorder (indicated by the selector
feature) based on the results of a number of blood tests and levels of alcohol consumption. Use 90%
of the dataset for training and 10% for testing. Average your results over 50 random splits of the data
into training sets and test sets. Limit the number of boosting iterations to 100. In a single plot show:

• average training error after each boosting iteration

• average test error after each boosting iteration

3. (5 points) Using all of the data for training, display the selected feature component j, threshold c, and
class label C1 of the decision stump ht(x) used in each of the first 10 boosting iterations (t = 1, 2, ..., 10)

4. (5 points) Using all of the data for training, in a single plot, show the empirical cumulative distri-
bution functions of the margins yifT (xi) after 10, 50 and 100 iterations respectively, where fT (x) =∑T
t=1 αtht(x). Notice that in this problem, before calculating fT (x), you should normalize the αts so

that
∑T
t=1 αt = 1. This is to ensure that the margins are between -1 and 1.

Hint: The empirical cumulative distribution function of a random variable X at x is the proportion of
times X ≤ x.

3
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2 Model Selection and Cross-Validation [20 points]

2.1 [13 points] Bias-Variance Trade-off

Suppose, we define a term named True Risk as the MSE (Mean Squared Error) between predicted model
and the true model as:

R(f) = E[(f(X)− Y )2]

If we assume zero noise variance, it is shown that this risk can be expressed in terms of Bias-Variance
Trade-off, i.e:

R(f) = E[(f(X)− Y )2] = V ariance+Bias2

where Y = f∗(X).

We can also define risk in terms of our estimated parameter θ̂ (obtained using MLE or MAP or density
estimator, etc) and the true parameter θ as:

R(θ, θ̂) = Eθ[(θ̂ − θ)2] = V arθ(θ̂) + bias2

where bias = Eθ[θ̂]− θ

Let X1, . . . , Xn ∼ Bernoulli(p), be our coin-flip example where each Xi is an independent flip, Xi = 1
indicates flipping a head, and Xi = 0 indicates flipping a tail, with p as the probability of getting a head.

Consider two estimators for p: p̂1 = 1
n

∑
iXi (the MLE estimate) and p̂2 =

∑
iXi+α

α+β+n (the mean of the

posterior Beta distribution P (p|D) when we use Beta(α, β) as prior).

1. (1 point) Compute the risk of p̂1, i.e. R(p, p̂1)

2. (4 points) Compute the risk of p̂2, i.e. R(p, p̂2)

3. (2 points) Which estimator p̂1 or p̂2 you would prefer when there is less data and which would you
prefer when there is more data? (Hint: consider bias-variance tradeoff)

4. (3 points) Given a particular n, find the value of α and β that will make the risk of p̂2 constant.

5. (3 points) Using Hoeffding’s inequality, and knowing that P (0 ≤ Xi ≤ 1) = 1, find an upper bound of
|p̂1 − p| with a probability of at least 1− γ.

2.2 [7 points] Model Selection

Let x ∈ {0, 1} denote the result of a coin toss (x = 0 for tails, x = 1 for heads). The coin is potentially biased,
so that heads occurs with probability θ1. Suppose that someone else observes the coin flip and reports to
you the outcome, y. But this person is unreliable and only reports the result correctly with probability θ2;
i.e., p(y|x, θ2) is given by

y = 0 y = 1
x = 0 θ2 1− θ2

x = 1 1− θ2 θ2

4



Assume that θ2 is independent of θ1 and x.

1. (1 point) Write down the joint probability distribution p(x, y|θ) as a 2×2 table, in terms of θ = (θ1, θ2).
Hint: write down how the likelihood function p(x, y|θ) factorizes.

2. (1 point) Suppose we have the following dataset: x = (1, 1, 0, 1, 1, 0, 0), y = (1, 0, 0, 0, 1, 0, 1). What are

the MLEs for θ1 and θ2? Justify your answer. What is p(D|θ̂,M2) where M2 denotes this 2-parameter
model?

3. (1 point) Now consider a model with 4 parameters, θ = (θ1, θ2, θ3, θ4), representing p(x, y|θ) = θx,y.
(Only 3 of these parameters are free to vary, since they must sum to one.)

x y θ
0 0 θ0,0 ≡ θ1

0 1 θ0,1 ≡ θ2

1 0 θ1,0 ≡ θ3

1 1 θ1,1 ≡ θ4

What is the MLE of θ? What is p(D|θ̂,M4) where M4 denotes this 4-parameter model?

4. (4 points) Suppose we are not sure which model is correct. We compute the Leave-One-Out Cross
Validation (LOOCV) log likelihood of the 2-parameter model M2 and the 4-parameter model M4 as
follows:

L(M) =

m∑

i=1

log p(xi, yi|M, θ̂(D−i))

and θ̂(D−i) denotes the MLE computed on D excluding row i. Which model will LOOCV pick and
why? Hint: notice how the table of counts changes when you omit each training case one at a time.

3 Neural Networks [15 points]

3.1 [15 points] Network Understanding

1. (2 point) Suppose my training data has lots of noise because it involves responses from human partic-
ipants (and humans are “noisy” :-)). My Neural Network gave non-zero training error with 3 hidden
layers, so I will try 4 hidden layers instead to reduce the error. Is this a good idea or bad idea?
Justify/discuss your answer.

2. (2 points) When using back-propagation, it is important to choose a good range of random values for
the weights. What problems arise if the weights are too small? What happens if they are too large?

3. (3 points) Consider the following neural network in Figure 2 in which the hidden unit nonlinear acti-
vation functions g() are given by logistic sigmoid functions of the form σ(a) = 1

1+exp(−a) .

Also recall that the overall network function takes the form

yk(x,w) = σ(

M∑

j=1

w
(2)
kj g(

D∑

i=1

w
(1)
ji xi + w

(1)
j0 ) + w

(2)
k0 )

Show that there exists an equivalent network, which computes exactly the same function, but with
hidden unit activation functions given by tanh(a) where the tanh function is defined as tanh(a) =
ea−e−a

ea+e−a . Hint: first find the relation between σ(a) and tanh(a), and then show that the parameters of
the two networks can be obtained from one another by linear transformations.

5



Figure 2: Diagram of a 2-layer neural network

4. (4 points) Given the above transformation, now show that a general linear combination of logistic
sigmoid functions of the form

Exercises 173

mapping from input variables to targets. In the next chapter, we shall study an anal-
ogous class of models for classification.

It might appear, therefore, that such linear models constitute a general purpose
framework for solving problems in pattern recognition. Unfortunately, there are
some significant shortcomings with linear models, which will cause us to turn in
later chapters to more complex models such as support vector machines and neural
networks.

The difficulty stems from the assumption that the basis functions φj(x) are fixed
before the training data set is observed and is a manifestation of the curse of dimen-
sionality discussed in Section 1.4. As a consequence, the number of basis functions
needs to grow rapidly, often exponentially, with the dimensionality D of the input
space.

Fortunately, there are two properties of real data sets that we can exploit to help
alleviate this problem. First of all, the data vectors {xn} typically lie close to a non-
linear manifold whose intrinsic dimensionality is smaller than that of the input space
as a result of strong correlations between the input variables. We will see an example
of this when we consider images of handwritten digits in Chapter 12. If we are using
localized basis functions, we can arrange that they are scattered in input space only
in regions containing data. This approach is used in radial basis function networks
and also in support vector and relevance vector machines. Neural network models,
which use adaptive basis functions having sigmoidal nonlinearities, can adapt the
parameters so that the regions of input space over which the basis functions vary
corresponds to the data manifold. The second property is that target variables may
have significant dependence on only a small number of possible directions within the
data manifold. Neural networks can exploit this property by choosing the directions
in input space to which the basis functions respond.

Exercises
3.1 (�) www Show that the ‘tanh’ function and the logistic sigmoid function (3.6)

are related by
tanh(a) = 2σ(2a)− 1. (3.100)

Hence show that a general linear combination of logistic sigmoid functions of the
form

y(x,w) = w0 +

M∑

j=1

wjσ
(x− µj

s

)
(3.101)

is equivalent to a linear combination of ‘tanh’ functions of the form

y(x,u) = u0 +

M∑

j=1

uj tanh
(x− µj

s

)
(3.102)

and find expressions to relate the new parameters {u1, . . . , uM} to the original pa-
rameters {w1, . . . , wM}.

is equivalent to a linear combination of tanh functions of the form

y(x,u) = u0 +

M∑

j=1

ujtanh

(
x− µj

2s

)

and find expressions to relate the new parameters {u1, . . . , uM} to the original parameters {w1, . . . , wM}.
5. (4 points) Suppose that you have two types of activation functions at hand:

gI(x) = x,

gs(x) =

{
1 ifx ≥ 0,

0 otherwise.

Now consider the indicator function I[a,b)(x):

I[a,b)(x) =

{
1 ifx ∈ [a, b);

0 otherwise.

Construct a neural network with one input x and one hidden layer whose response is yI[a,b)(x), for
given real values y, a, and b; that is, its output is y if x ∈ [a, b), and 0 otherwise. Draw the structure
of the neural network, specify the activation function for each unit (either gI or gs), and specify the
values for all weights (in terms of y, a, and b).
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4 Instance-based Learning [20 points]

4.1 [10 Points] Kernel Regression

In this question we are given a set of n examples, (xi, yi) (where xi is the input, and yi is output), i = 1, . . . , n,
and xi ∈ Rd and yi ∈ R.

Kernel regression is a widely used non-parametric regression method that applies a kernel function K(.) to
smooth the data yi:

r̂(x) =

∑n
i=1K(x− xi)yi∑n
i=1K(x− xi)

=

n∑

i=1

wi(x, xi)yi

where wi(x, xi) = K(x−xi)∑n
j=1K(x−xj) , and r̂(x) is the estimator of y (a scalar) at the point x (which is d-

dimensional). There are many choices for the function K(.); the most common one being the Gaussian

kernel K(x) = e−‖x‖
2/σ2

.

In the following questions we are going to look at 1-dimensional (d = 1) classification data with binary
classes, i.e., yi ∈ {0, 1}.

1. (2 points) Suppose that xi = i for all i = 1, . . . , n, and to predict which class any new point x0 ∈ [0, n]
belongs to, we use the decision rule

ŷ0 = I(r̂(x0) > 0.5)

where I is the indicator function that equals to 1 if the expression within I is true, and 0 if not true.
Can you think of a kernel function K such that this decision rule gives the same answer as the k-nearest
neighbor algorithm? (Hint: the function K(x) should be defined at some fixed range like [a, b); you can
ignore the case where x0 is near the margins, i.e. close to 0 or n.)

2. In general, if training data is drawn from some marginal distribution p(x), we are unable to find a nice-
looking kernel to simulate k-NN. One way to solve this problem is to use “locally weighted regression
(LWR)” instead of kernel regression. The LWR is very similar to kernel regression except that we only
calculate the weighted sum of k points near the given new point x:

r̂(x) =
∑

i|xi∈k-NN of x

wi(x, xi)yi

Now consider the case of weighted k-nearest neighbor (WKNN). Weighted k-NN penalizes the vote of
every point z within the k-NN range by d(x, z), the distance from x to z, meaning that having a point
in class j in the k-neighbor will increase the vote for this class by 1/d(x, z).

(a) (2.5 points) What should we put in for wi(x, xi) so that the decision rule ŷ = I(r̂(x0) > 0.5) gives
the same answer as (unweighed) k-NN?.

(b) (2.5 points) What type of k-NN does kernel regression with an arbitrary kernel function K(x)
simulate exactly? (Specify the value of k, whether the k-NN is weighted or non-weighted, and, if
weighed, what the weights are.)

3. (3 points) How do you modify locally weighted regression method if we want to use it to simulate the
weighted k-NN algorithm with more than 2 classes?
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4.2 [10 Points] k-NN Classifier and Decision Surfaces

1. (5 points) Decision Surfaces

Suppose, you have the following classifiers: (a) logistic regression, (b) Gaussian Naive Bayes, (c) 1-
Nearest-Neighbor, and (d) 10-Nearest-Neighbor. Now, if you apply each of these classifiers on the
following two datasets displayed in Figure 3, what would be the possible decision surface/boundaries.
A hand-drawn decision boundary would be enough for each of the cases. But make sure that you
briefly describe the important features of the boundary, e.g., (i) what made you choose that boundary,
(ii) how good of a classifier it is, (iii) and anything else noteworthy.

Figure 3: a) Toy data for Question 4.2. 1. b) Toy data for Question 4.2. 1

Each image contains 200 points (2-dimensional), 100 from each of the two well-separated clusters;
however, a few labels have been flipped due to noisy observation. For your convenience, these two
images are made available in the document section of the Blackboard.

2. [5 points] Limitation of k-NN Consider n sample points {x1,x2, . . . ,xn} independently and uni-

formly drawn from a p-dimensional zero-centered unit ball B := {x |
√
x>x ≤ 1,x ∈ Rp}. In this

problem you will study the size of the 1-nearest neighborhood of the origin 0 and how it changes with
respect to the dimension p, thereby gain intuition about the downside of k-NN in high dimension.
More precisely, consider the distance from 0 to its nearest neighbor in the sample:

d∗ := min
1≤i≤n

√
x>i xi,

which is a random variable since the sample is random.

(a) (1.5 point) In the special case p = 1, what is the cumulative distribution function (cdf) of d∗, i.e.,
P (d∗ ≤ t) for 0 ≤ t ≤ 1?

(b) (1.5 point) In the general case p ∈ {1, 2, 3, . . .}, what is the cdf of d∗? (Hint: You may find the

following fact useful: the volume of a p-dimensional ball with radius r is (r
√
π)p

Γ(p/2+1) , where Γ(·) is

the Gamma function.)

(c) (2 point) With the cdf you derived in Problem 2.2b, answer the following question: How large
should the sample size n be such that with probability at least 0.9, the distance d∗ from 0 to its
nearest neighbor is less than 1/2, i.e., half way from 0 to the boundary of the ball? Your answer
should be a function of p. From this function, what can you infer? Can you identify the downside
of k-NN in terms of n and p?
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CSE 512 Machine Learning: Homework 2

Marina von Steinkirch
SBU ID: 107185255

1 Boosting

1.1 Combination of Weak Classifiers

(Please check attached page in the end - page 1.)

�

1.2 Loss Function

The goal of boosting is to solve the following optimization problem:

min
f

N∑
i=1

L(yi, f(xi)),

and L(y, ŷ) is some loss function, with f assumed to be an adaptative basis function model in the form

f(x) = w0 +

M∑
m=1

wmφm(x).

1. Is it correct that for the binary classification, absolute error or 0/1 loss is the perfect choice?

Solution:

No. The 0/1 loss function is non-differentiable and non-convex. There is no guarantees

about minimization with no-convex functions, i.e., it is not guaranteed to find a global

minimum. An upper differentiable and convex approximation of the 0/1 loss function is

the exponential loss function.

�

2. Consider the exponential error function:

E =

m∑
i=1

exp
(
− (ỹifT (xi))

)
,

where fT (x) is a classifier denied in terms of a linear combination of base classifiers yt(x) of the form

fT (x) =
1

2

T∑
t=1

αtyt(x)

and ỹi ∈ {−1,+1} are the training set target values. Show that E, which is minimized by the AdaBoost
algorithm, does not correspond to the log-likelihood of any well-behaved probabilistic model.
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Solution:

Adaboost does not have a simple interpretation in terms of the maximum likelihood. It

minimizes empirical version of

Ex,y = P (y = +1|x)e−f(x) + P (y = −1|x)ef(x),

over all f, minimized when

f(x) =
1

2
ln
P (y = +1|x)

P (y = −1|x)
,

or

P (y = +1|x) =
1

1 + e−2f(x)
.

One way to see this is that if we consider the maximum likelihood of logistic regression,

it tries to minimize the sample average of

φ(α) = ln(1 + e−2α),

which is close to Adaboost, that minimizes the sample average of

φ(α) = e−α.

We can prove this looking to the Taylor expansion around zero,

ln(1 + e−2α) + 1− ln 2 ∼ 1− α+
α2

2
... = e−α.

The two functions are very similar around zero but asymptotically they are very different.

While the logarithm will grows linearly, the exponential will grow exponentially (being

non-normalized).

�

1.3 Adaboost on a Toy Model

(Please check attached page in the end - pages 2-3.)

�

1.4 Implement the AdaBoost algorithm.

AdaBoost trains a sequence of classifiers. Each classifier is trained on the same set of training data

(xi, yi), i = 1, . . . ,m,

but with the significance Dt(i) of each example

{xi, yi}

weighted differently.
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At each iteration, a classifier,
ht(x)→ {−1, 1},

is trained to minimize the weighted classification error,

m∑
i=1

Dt(i) · I(ht(xi) 6= yi),

where I is the indicator function (0 if the predicted and actual labels match, and 1 otherwise). The overall
prediction of the AdaBoost algorithm is a linear combination of these classifiers,

HT (x) = sign(

T∑
t=1

αtht(x)).

A decision stump is a decision tree with a single node. It corresponds to a single threshold in one of the
features, and predicts the class for examples falling above and below the threshold respectively,

ht(x) = C1I(xj ≥ c) + C2I(xj < c),

where xj is the jth component of the feature vector x. Unlike in class, where we split on Information Gain,
for this algorithm split the data based on the weighted classification accuracy described above, and find the
class assignments C1, C2 ∈ {−1, 1}, threshold c, and feature choice j that maximizes this accuracy.

1. Submit your source code. SUBMITTED!

2. Evaluate your AdaBoost implementation on the Bupa Liver Disorder dataset. The classification prob-
lem is to predict whether an individual has a liver disorder (indicated by the selector feature) based
on the results of a number of blood tests and levels of alcohol consumption. Use 90% of the dataset
for training and 10% for testing. Average your results over 50 random splits of the data into training
sets and test sets. Limit the number of boosting iterations to 100. In a single plot show:

• average training error after each boosting iteration

• average test error after each boosting iteration
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3. Using all of the data for training, display the selected feature component j, threshold c, and class label
C1 of the decision stump ht(x) used in each of the first 10 boosting iterations (t = 1, 2, ..., 10)

t (iteration) j (feature) c (threshold) C1 (label)
1 4 20.5 1
2 2 26.5 1
3 3 19.5 1
4 1 59.5 -1
5 5 35.5 -1
6 5 3.5 -1
7 0 88.5 -1
8 4 12.5 1
9 2 19.5 -1
10 3 22.5 1

4. Using all of the data for training, in a single plot, show the empirical cumulative distribution functions of
the margins yifT (xi) after 10, 50 and 100 iterations respectively, where fT (x) =

∑T
t=1 αtht(x). Notice

that in this problem, before calculating fT (x), you should normalize the αts so that
∑T
t=1 αt = 1. This

is to ensure that the margins are between -1 and 1.

4



2 Neural Networks

2.1 Networking Understanding

1. Suppose my training data has lots of noise because it involves responses from human participants (and
humans are noisy). My Neural Network gave non-zero training error with 3 hidden layers, so I will
try 4 hidden layers instead to reduce the error. Is this a good idea or bad idea? Justify/discuss your
answer.

Solution:

A network that is too complex that fits the noise, not just the signal, leads to over-
fitting, which is especially dangerous because it can lead to predictions that are far

beyond the range of the training data. Therefore, adding another hidden layer is not

the best strategy, because the noise will also be reproduced.

The best approach is performing cross verification. Some of the training cases are reserved,

and not actually used for training in the back propagation algorithm. Instead, they are

used to keep an independent check. Usually, the initial performance of the network on

training and verification sets is the same. As training progresses, the training error

drops, minimizing the true error function, so the verification error drops too. However,

if the verification error stops dropping, or starts to rise, this indicates that the network

is starting to overfit the data, and training should cease (over-learning).

�

2. When using back-propagation, it is important to choose a good range of random values for the weights.
What problems arise if the weights are too small? What happens if they are too large?

Solution:

If the weights are too small, the sigmoidal activation function will be approximately

linear, which will lead to slow convergence in the network training. Setting the initial

weights too large will result in poor fit or in oscillation between wrong values of weight,

so that the network may take long time to learn.

�

3. Show that there exists an equivalent network, which computes exactly the same function, with hidden
unit activation functions given by σ(a) = 1

1+exp(−a) and σ′(a) tanh(a).
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Solution:

tanh(b) =
eb − e−b

eb + e−b

=
e2b − 1

e2b + 1

=
1− e−2b

1 + e−2b

= σ(a = 2b)− σ(−a = −2b),

but:

2× σ(a)− 1 =
2− 1− e−a

1 + e−1

=
1− e−a

1 + e−a
.

Thus, the relation between then is given by (also illustrated in the figure below):

tanh(b) = 2σ(2b)− 1.

�

4. Given the above transformation, show that a general linear combination of logistic sigmoid functions
of the form

y(x,w) = w0 +

M∑
j=1

wjσ
(x− µj

s

)
is a combination linear of tanh functions of the form:

y(x,w) = u0 +

M∑
j=1

uj tanh
(x− µj

2s

)
.
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Solution:

Using 1+tanh(a/2)
2 = σ(a),

y(x,w) = w0 +

M∑
j=1

wjσ
(x− µj

s

)

= w0 +

M∑
j=1

wj

(
1 + tanh(

x−µj

2s )

2

)

= w0 +

M∑
j=1

wj
2

+

M∑
j=1

wj
2

tanh
(x− µj

2s

)

y(x,w) = u0 +

M∑
j=1

uj tanh
(x− µj

2s

)
where

u0 = w0 +

M∑
j=1

wj
2
,

and

uj =
wj
2

j ∈ {1, ...,M}.

�

5. Consider two types of activation function:

gI(x) = x

and

gs =

{
1 if x ≥ 0
0 otherwise

Consider the indicator function:

I[a,b)(x) =

{
1 if x ≥ [a, b)
0 otherwise

Construct a neural network with one input x and one hidden layer with response yI[a,b)(x)e, for given
values y, a and b.

Solution:

For the two activation functions, the general form of the output can be written as:

out(x) = gI

(
w0 +

∑
i

wigs(w
(i)
0 + w

(i)
1 x)

)
.
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Now, let us think about the three things that have to happen:

out(x)→

 0 if x < a
y if x > a but x < b
0 if x > b

We can build this neural network with two step activation, one comparing x to a and one

comparing x to b. Since the output has no constant independent of the constant y, w0 =

0 in the first activation function. We set w
(1)
0 = −a, w

(2)
0 = −b, w

(1)
1 = 1, w

(2)
1 = −1

w1 = y, and w2 = −y. The result is:

out(x) = gI

(
ygs(x− a)− ygs(x− b)

)
.

This is proved to be correct since:

out(x)→


gI

(
ygs(< 0)− ygs(< 0)

)
= 0 if x < a

gI

(
ygs(x > 0)− ygs(x < 0)

)
= y if x > a but x < b

gI

(
ygs(x > 0)− ygs(x > 0)

)
= 1− 1 = 0 if x > b

tanh(b) = 2σ(2b)− 1.

�
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3 Model Selection

SOLUTION ATTACHED IN THE END (PAGES 4-7).

4 Instance-Based Learning

SOLUTION ATTACHED IN THE END (STARTING ON PAGE 8).

9



































CSE 512 Machine Learning: Homework 3

Department of Computer Science
Stony Brook University

• There are 3 questions on this assignment. The first question involves coding. Do not attach your code
to the writeup. Instead, zip and submit your code electronically on Blackboard (Bb). Name your .zip
file as [your SBU name].zip, e.g. sbillah.zip

• The assignment is due at 5:30 PM (beginning of class) on April 8, 2014.

• Do not forget to put both your name and SBU ID on each page of your submission.

• If you have any questions, please direct your question first to the TA, then the instructor.

1 k-NN, SVM, Classification and Cross-Validation [50 points]

In this question, you will explore how cross-validation can be used to fit the “magic parameters”. More
specifically, you will fit the constant k in the k-Nearest Neighbor algorithm, as well as the slack penalty C
that appears in Support Vector Machines.

For all implementation questions, please electronically submit your source code through Blackboard, and
supply pseudo-code in your writeup where requested.

1. (2 points) Download the file hw3 matlab.zip from

http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hw3_matlab.zip

and unpack it. The file cvdataset.mat contains the Matlab variables traindata (training data),
trainlabels (training labels), testdata (test data), testlabels (test labels) and evaldata (evalua-
tion data, needed later).

This is a text classification task: given a document, you need to predict its topic. So, each row
corresponds to a data point (a document). Each column is a feature, a word. The value of the feature
is a relative frequency of the word in a document.

The cosineDistance.m implements the cosine distance, a distance function commonly used for text
data. It takes two feature vectors, and computes a nonnegative, symmetric distance between x and
y. To check your data, compute and report the distance between the first training example from each
class.

2. (6 points) Implement the k-Nearest Neighbor (kNN) algorithm in Matlab. Hand in pseudo-code. Hint:
You might want to pre-compute and store the distances between all pairs of points, to speed up the
cross-validation later.

3. (5 points) Implement n-fold cross validation for kNN. Your implementation should partition the training
data and labels into n parts of approximately equal size. Hand in pseudo-code.

4. (8 points) Compute the 10-fold (i.e. n = 10) cross-validation accuracy for the training data, for
k = 1, 2, ..., 100 and plot your results. Also plot the training and test accuracy for the same choices
of k. How do you interpret these plots? Does the value of k which maximizes the cross-validation
accuracy also maximizes the test set accuracy? Why or why not?

5. (6 points) Now download libsvm using the link:

http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/libsvm-mat-2.84-1.zip

1

http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/hw3_matlab.zip
http://www.cs.stonybrook.edu/~leman/courses/14CSE512/hws/libsvm-mat-2.84-1.zip


and unpack it to your working directory. It has a Matlab interface which includes binaries for Windows.
It can be used on OS X or Unix but has to be compiled—see the README file.

In your hw3 matlab folder find the files testSVM.m (an example demonstration script), trainSVM.m (for
training) and classifySVM.m (for classification), which will show you how to use libsvm for training and
classifying using an SVM. Run testSVM. This should report a test error of 0.3077. In order to train an
SVM with slack penalty C on training set data with labels labels, call svmModel = trainSVM(data,

labels, C). In order to classify examples test, call testLabels = classifySVM(svmModel, test).
Train an SVM on the training data with C = 4, and report the error on the test set.

6. (5 points) Now implement n-fold cross-validation for SVMs. Similar to kNN, split your training data
into n roughly equal parts. Hand in the pseudo-code.

7. (8 points) Compute the 10-fold (i.e. n = 10) cross-validation accuracy for the training data, for
C = 1, 2, ..., 100 and plot your results. Also plot the training and test accuracy for the same choices
of C. How do you interpret these plots? Does the value of C which maximizes the cross-validation
accuracy also maximizes the test set error? Why or why not?

8. (10 points) Design your favorite classifier: You have to use either k-NN or SVM, but you are allowed
to use arbitrary values for k or for C. For kNN, you can invent different distance functions than the
one we gave you or you can try to weigh the influence of training examples by their distance from the
test point (Hint: kernels). If you want, you can do arbitrary feature selection, e.g. you can ignore
columns. You can also perform any linear transformation of the features if you want. Whatever you
do, please document it, and apply your algorithm to the evaldata data set. Output your class labels
for this evaluation set, one label per line, in the order of the examples from the evaluation set. Submit
your labels as file evallabels yourid.txt where yourid is your SBU name, e.g. sbillah. Submit
the actual code and the predicted labels (in file evallabels yourid.txt) through Blackboard.

2 SVM and Kernels [25 points]

2.1 Working with Linear SVMs

Consider the following data set with one positive example x1 = (0, 0), y1 = +1 and one negative example
x2 = (4, 4), y2 = −1.

Quiz 4: SVMs and Boosting

Problem 2: Support Vector Machines (50 points)

Part 2.A: Working with Linear SVMs (14 points)

Consider the following data set with one positive example x̄1 = (0, 0), y1 = +1 and one
negative example x̄2 = (4, 4), y2 = �1.

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1  0  1  2  3  4  5

x


x

1

2

Part 2.A.1. Is the data linearly separable?

Yes No

Part 2.A.2. If your answer to Part 2.A.1 is No, then explain in a single short sentence
why not?
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1. (1 points) Is the data linearly separable? Why, why not?
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2. (3 points) If you use a linear SVM classifier for the given data, what would be the decision rule?
Provide below.

Quiz 4: SVMs and Boosting

If your answer to Part 2.A.1 is Yes, then

1. provide the SVM classifier below.

h(x̄) =

⇢
+1, if x1 + x2 + � 0,
�1, otherwise.

2. Also provide the weight value of the support vectors ↵1 and ↵2, as well as the o↵set-
threshold value b of the SVM classifier.

↵1 =

↵2 =

b =

Part 2.B: On Properties of Linear SVMs I (10 points)

Suppose we have an additional positive example x̄3 = (�1,�1), y3 = +1.

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1  0  1  2  3  4  5

x


x

1

2

3

Part 2.B.1. Which data points are support vectors? (Circle)

none 1 2 3
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3. (2 points) Provide the weight value of the support vectors α1 and α2, as well as the offset-threshold
value b of the SVM classifier.

Suppose we have an additional positive example x3 = (1, 1), y3 = +1 as shown below.

Quiz 4: SVMs and Boosting

If your answer to Part 2.A.1 is Yes, then

1. provide the SVM classifier below.

h(x̄) =

⇢
+1, if x1 + x2 + � 0,
�1, otherwise.

2. Also provide the weight value of the support vectors ↵1 and ↵2, as well as the o↵set-
threshold value b of the SVM classifier.

↵1 =

↵2 =

b =

Part 2.B: On Properties of Linear SVMs I (10 points)

Suppose we have an additional positive example x̄3 = (�1,�1), y3 = +1.

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1  0  1  2  3  4  5

x


x

1

2

3

Part 2.B.1. Which data points are support vectors? (Circle)

none 1 2 3
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4. (2 points) Which data points are support vectors? (Circle on the figure)

5. (2 points) Is the decision boundary for this data same as or different from for the data in previous
part? Explain.

6. (2 points) Relative to the support vectors for the previous data, how do the weights (i.e. α values) of
the support vectors for the data in this part change? Explain.

Next suppose we have yet another positive example x4 = (2, 2), y4 = +1 as shown below.

Quiz 4: SVMs and Boosting

Part 2.B.2. If both this data set and that in Part 2.A are linearly separable, then

1. is the decision boundary for this data set di↵erent than for Part 2.A?

Yes No

2. Relative to the support vectors for the data set in Part 2.A, the weights (↵ values)
of the support vectors for the data set in this part are

the same smaller larger.

Part 2.C: On Properties of Linear SVMs II (10 points)

Suppose we have an additional positive example x̄4 = (2, 2), y4 = +1.

-5

-4

-3

-2

-1

 0
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-5 -4 -3 -2 -1  0  1  2  3  4  5

x

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1
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3

4

Part 2.C.1. Which data points are support vectors? (Circle)

none 1 2 3 4

Part 2.C.2. If both this data set and that in Part 2.B are linearly separable, then

1. is the decision boundary for this data set di↵erent than for Part 2.B?

Yes No

2. Relative to the support vectors for the data set in Part 2.B, the weights (↵ values) of
the support vectors for the data set in this part are

the same smaller larger.

Page 8 of 10

7. (2 points) Which data points are support vectors? (Circle on the figure)
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8. (2 points) Is the decision boundary for this data same as or different from for the data in previous
part? Explain.

9. (2 points) Relative to the support vectors for the previous data, how do the weights (i.e. α values) of
the support vectors for the data in this part change? Explain.

2.2 Working with Kernel SVMs

Suppose we have an additional negative example x5 = (3, 3), y5 = 1 as below.

Quiz 4: SVMs and Boosting

Part 2.D: On the Power of SVMs (10 points)

Suppose we have an additional negative example x̄5 = (�3,�3), y5 = �1.

-5

-4

-3

-2
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-5 -4 -3 -2 -1  0  1  2  3  4  5

x


x

1

2

3

4

5

Circle the number(s) to the left side of the kernels described in the enumerated list below
that can separate the data.

1. linear: K(ū, v̄) = ū · v̄

2. polynomial of degree n � 2: K(ū, v̄) = (1 + ū · v̄)n

3. Radial Basis Function / Gaussian with su�ciently small scale parameter �: K(ū, v̄) =

e�
kū�v̄k
2�2

4. none
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1. (2 points) Circle the letter(s) to the left side of the kernels described in the list below that can separate
the data.

(a) linear: K(u, v) = u · v
(b) polynomial of degree n ≥ 2: K(u, v) = (1 + u · v)n

(c) Radial Basis Function / Gaussian with sufficiently small scale parameter σ : K(u, v) = e−
||u−v||

2σ2

(d) none

Now suppose we have two additional examples: one positive example x6 = (+1,+1), y6 = +1, and one
negative example x7 = (4, 4), y7 = 1 as given below.

Quiz 4: SVMs and Boosting

Part 2.E: On Data Transformations and Kernels (6 points)

NOTE: It is possible to solve this problem without solving for the ↵’s.
Hint: Think of the definition of a kernel.

Suppose we have two additional examples: one positive example x̄6 = (+1, +1), y6 = +1,
and one negative example x̄7 = (�4,�4), y7 = �1.
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Consider using the following kernel:

K(ū, v̄) = 2kūkkv̄k.

1. Find the SVM classifier:

h(x̄) =

⇢
+1, if � 2 x2

1 + x1x2 + x2
2 + x1 + x2 + � 0,

�1, otherwise.

2. Which data points are support vectors? (Circle)

none 1 2 3 4 5 6 7
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Consider using the following kernel: K(u, v) = 2 ||u|| ||v||.
2. (3 points) Find the SVM classifier:

Quiz 4: SVMs and Boosting

Part 2.E: On Data Transformations and Kernels (6 points)

NOTE: It is possible to solve this problem without solving for the ↵’s.
Hint: Think of the definition of a kernel.

Suppose we have two additional examples: one positive example x̄6 = (+1, +1), y6 = +1,
and one negative example x̄7 = (�4,�4), y7 = �1.
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Consider using the following kernel:

K(ū, v̄) = 2kūkkv̄k.

1. Find the SVM classifier:

h(x̄) =

⇢
+1, if � 2 x2

1 + x1x2 + x2
2 + x1 + x2 + � 0,

�1, otherwise.

2. Which data points are support vectors? (Circle)

none 1 2 3 4 5 6 7
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3. (2 points) Which data points are support vectors? (Circle on the figure)

Hint: It is possible to solve this problem without solving for the αs. Think of the definition of a kernel.

3 Learning Theory [25 points]

3.1 VC Dimension

In this section you will calculate the lower-bound for the VC-dimension of some hypothesis classes.

1. [8 points] Consider the hypothesis class of linear classifiers with offset in d dimensions:

H = {sign(θ · x+ θ0) : θ ∈ Rd, θ0 ∈ R}

Show that there exists a set of d+ 1 points {x1, x2, . . . , xd+1} that can be shattered by H. Specifically,
first specify the points, and then given any labeling y1, y2, . . . , yd+1, describe explicitly how to construct
a classifier in H that agrees with the labeling.

2. [7 points] Consider the hypothesis class of convex d-gons in the plane. A point is labeled positive if
it is inside the d-gon. Demonstrate that there exists a set of 2d + 1 points on which any labeling can
be shattered. Hint: You may think of data points on a circle.

3.2 Sample Complexity

In this part, you will use sample complexity bounds to determine how many training examples are needed
to find a good classifier.

Let H be the hypothesis class of convex d-gons in the plane. In part 1, you showed that the VC dimension
of d-gons in R2 is at least 2d+ 1. It can be shown that the upper bound is also 2d+ 1.

Suppose we sample a number of m training examples i.i.d. according to some unknown distribution D over
R2 × {+,−}.

3. [10 points] What is the least number of training examples m > 1 you need to have such that with
probability at least 0.95 the convex 4-gon separator in the plane with the smallest training error
ĥERM = arg minh∈Herrortrain(h) has the following? Please show all your work.

errortrue(ĥERM )− errortrain(ĥERM ) ≤ 0.05

Note that you may not assume errortrain(ĥERM ). You may use any formulas from the lecture slides,
textbook, or readings from the website, but please tell us where you found the formula(s) you use.
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