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ABSTRACT
The study of complex networks pervades all of the sciences.
Characterizing complex network’s structure is a key to un-
derstand any unifying principles underlying their topology.
Previous works have shown that many topological properties
can vary for different types of system. However these works
generally focus only on a few characteristics at time. In this
work we present methods and results for an extensive anal-
ysis of 20 global and local graph topological features of 1245
publicly available networks. The raw networks can have or-
ders ranging from a few hundred nodes (e.g., some small
biological and small ego-centered examples) to hundred of
thousand nodes (e.g., roads and large ego-centered exam-
ples). In order to perform the classification task, we sample
them into five sets of different graph orders, assigning each
of them to one of following four classes: technological net-
works, information networks, biological networks, and social
networks. We then perform a comprehensive classification
analysis, using several supervised and unsupervised meth-
ods, and one-vs.-all/one-vs.-one approaches. As a result, we
are able to report remarkable testing set accuracies larger
than 90% for the majority of the approaches and set config-
urations. Additionally, we confidently identify whose are the
key topological features for complex network classification.

1. INTRODUCTION
A complex network can be defined as a set of interacting
elements possessing some emerging properties, which only
appears when considering the system as a whole. The struc-
ture and dynamics of complex networks are intrinsically re-
lated, since structure always affects function. The study of
such systems are modeled with graphs, in which elements
and their relations are represented by nodes and links, re-
spectively.

With the emergence of graph databases, various graph ker-
nel methods have been proposed for the task of classifying
sub-graphs. However, these methods have been proven to
have high computational overhead due to the combinatorial

nature of graphs. When it comes to classifying entire net-
works, a more suitable approach is to consider that graphs
belonging to the same class have similar topological descrip-
tions and label attributes. The main idea is to associate a
feature vector to each graph so that it enables the access to
any learning machine developed for statistical feature vec-
tors.

Graph classification is an important data mining task that
aims to learn a discriminative model from training examples
and then using the model to predict class labels of testing
examples. Graphs can be characterized by many different
measures. Authors have focused on several properties of net-
works which are able to represent a range of different system
(for example, see [1], [2], [3], [4], [5], and [6]). In this work,
we report the methods and results for complex networks
classification based on 20 global and local graph topological
features. Our database is composed by five sampled sets for
different order numbers: n = 100, 300, 500, 1000, and 2000.
Each of them containing three samples of up to 1245 network
publicly available databases [7] [8] [9] [10].

The rest of this paper is divided as follows. In the section
II, we review each of the 20 topological features and the 4
class labels for the complex networks classification. In the
section III, we describe the data extraction and sampling.
In the section IV, we present the classification results, which
are discussed in the section V.

2. THEORETICAL INTRODUCTION
The graph selection problem can be stated as follow: There
is a dataset of M graphs Gi ∈ D, with i = 1, ...,M . Each
graph Gi = (Vi, Ei) is given as a collection of vertices,
Vi = {vi1, ..., vin} and edges Ei = {(va, vb)|va, vb ∈ Vi]}.
The graph Gi may have features on the nodes and/or edges,
drawn from some common set of j features Σ for the entire
data set D. Finally, each graph Gi has a corresponding class
yi ∈ C, where C is the set of categorical class labels, given as
C = {1, ..., l} (l = 4 here). The goal of graph classification
is to learn a model f : D → C that predicts the class label
for any graph. The model is learned from a training set of
graphs with known class labels and then evaluated on a test-
ing set of graphs. The accuracy of the classification model
can be tested by comparing the predicted output ŷi = f(Gi)
with the true class label yi.

In the following subsections, we first describe the j = 20
graph topological attributes used in this work as the classi-



Figure 1: Snapshots of some of the networks in this work: Texas road system (tech), yeast protein interaction
(bio), Brightklite location based network (social), and US patent citation (info) [7] [8] [9] [10]

fication features. We then point out the four chosen class
labels for complex networks, as suggested in [11]. These sets
of feature vectors Fj = (fj1, ..fjM ) and their corresponding
class labels are then used to construct the classifiers in the
following sections.

2.1 Topological Features
For each graph Gi ∈ D, we calculate the following topologi-
cal features:

1. Order(Ord) and Size (Siz): Respectively, the total num-
ber of nodes, n = |V |, and the total number of edges,
m = |E|, in the network.

2. Betweenness Centrality (Bet): For a node u, it is the
sum of the fraction of all-pairs shortest paths that pass
through u. If we denote σvw as the total number of shortest
paths between v and w, and σvw(u), the total number of
shortest paths between nodes v and w going though u, the

betweenness centrality is bc(u) =
∑
v<w 6=w

σvw(u)
σvw

.

3. Closeness Centrality (Cen): For a node u, it represents
the reciprocal of the average shortest path length between
u and every other reachable node in the graph: cc(u) =

n−1∑
v∈{Vu} d(u,v)

, where d(u, v) is the length of the shortest

path between the nodes u and v. It measures how fast
information spreads from a given node to other reachable
nodes in the graphs.

4. Degree (Deg): For a node u, it is defined as the num-
ber of its neighboring edges. It can be formally defined
using the adjacency matrix: deg(u) =

∑
v∈V auv . In real-

world networks, the average degree often follows a power
law (scale-free networks).

5. Eccentricity (Ecc): For a node u, it represents the maxi-
mum length of the shortest path between u and every other
node in G. If u is isolated, then ecc(u) = 0.

6. Clustering coefficient (Clu): For a node u, it represents
the likelihood that any two neighbors of u are connected:
clc(u) = 2e

ku(ku−1)
, where ku is the number of neighbors

of u and eu is the number of connected pairs of neighbors.
If all the neighbors nodes of u are connected, then, the
neighborhood of u is complete and clc = 1. If no nodes in
the neighborhood of u are connected, clc = 0.

7. Square clustering coefficient (Scl): While clc gives the
likelihood that any two neighbors of u are connected, scc
gives the probability that two neighbors of node v share a
common neighbor different from v.

8. Pagerank (Pag): It is a ranking of the nodes in the graph
G based on the structure of the incoming links.

9. Communicability centrality (Com): For a node u, it is
the sum of closed walks of all lengths starting and ending
at node u.

10. Coreness (Cor): A k-core is a maximal subgraph that
contains nodes of degree k or more. The cor of a node is
the largest value k of a k-core with that node.

11. Density (Den): It is the ratio of existing to possible links
in G. It ranges from no link at all to all nodes connected (0
and 1 respectively): den(G) = m

n(n−1)
. Real networks are

usually very sparse, with ∼ 0.1.

12. Maximum Effective Eccentricity or Diameter (Dia):
It represents the maximum value of ecc over all nodes in the
graph.

13. Minimum Effective Eccentricity or Radius (Rad):
It represents the minimum value of ecc over all nodes in
the graph G.

14. Assortativity (Ass): It measures the similarity of con-
nections in G with respect to the node degree. Graphs
that have only single edges between vertices tend (in the
absence of other biases) to show disassortative mixing by
degree because the number of edges that can fall between
high-degree vertex pairs is limited. Since most networks are
represented as simple graphs this implies that most should
be disassortative [12].

15. Number of Cliques (NCl): A clique in an undirected
graph is a subset of its vertices such that every two vertices
in the subset are connected by an edge.

16. Number of Triangles (NTr): The number of triangle
connections in G.

17. Clique number (Cnu): The size of the largest clique for
G.

18. Transitivity (Tra): A global measure of clc, it computes
the fraction of all possible triangles present in G. The tran-
sitivity ranges from 0.1 to 0.8 in the real world network. It
can be interpreted as the probability for two neighbors of a
node to be connected.

19. Edge connectivity (Eco): The minimum number of edges
that must be removed to disconnect G.



2.2 Types of Networks
We label each of the complex networks into four classes :

? Social Networks are sets of people or groups of people
with some pattern of interactions. An important feature in
these networks is the so-called small-world experiment [13].
They also often contain a few number of hubs (vertices with
high degree). Examples: ego centered networks, population
records, affiliations.

? Information (Knowledge) Networks correspond to data
linked together. Examples: citation networks (which are
acyclic networks), www (web pages and their links, peer to
peer, keyword index.

? Technological Networks are human-made networks de-
signed for distribution of some commodity or resource, such
as electricity or information. Examples: the internet (phys-
ical network of computers), radio, telephone, power grids,
road systems.

? Biological Networks are nature-based networks. Their
edges are usually symmetrical and directed. Examples:
metabolic pathways, generic regulatory network, food web,
neural networks.

3. DATA PROCESSING
Data Collecting
We collected 1245 complex networks from four publicly avail-
able databases: SNAP [7], KONECT [8], ND [9], and VLADO
[10]. These network are labeled as the following:

? Social Networks: 5 social networks with geographic check-
ins, 983 ego-centered (Twitter, g+, Facebook), 4 Signed
networks with positive and negative edges (friend/foe).

? Information (Knowledge) Networks: 2 Citation (nodes
represent papers, edges represent citations), 8 Collabora-
tion (nodes represent scientists, edges represent collabora-
tions), 3 Communication (email communication networks
with edges communication), 4 Webgraphs (nodes represent
webpages, edges are hyperlinks), 4 Amazon Product Re-
view, 9 Peer-to-peer.

? Technological Networks: 117 Autonomous systems (graphs
of the internet), 7 Roads (nodes represent intersections and
edges roads connecting the intersections).

? Biological Networks: 2 Carbon exchanges, 43 Cellu-
lar (substrate in cellular networks), 43 Metabolic networks
(interactions between enzymes and metabolites), 3 Yeast
(protein-protein interaction), 8 Atlas (food-webs).

Data Sampling
To be able to use networks of different sizes, we need to
sample the large graph to get a smaller similar graph, i.e.
a smaller graph that preserves the properties of the original
graph as much as possible. This is the scale-down goal. For
this purpose, we sample each graph with five order num-
bers (number of nodes): 100, 300, 500, 1000, and 2000. The
sampling algorithm is based on snowball sampling, where a
graph starts with some set of seed nodes of interest, and
then repeatedly adds some neighbors of the seed nodes and
their incident edges. We assume that these networks and
their samples follow approximate power law distribution. In
general, the snowball sampling tends to underestimate this
power law exponent due to bias towards high degrees nodes.

It also can underestimates assortativity and node/link sam-
pling [14] [15] [16]. As a consequence, we see in the next
sections, we see that features such as assortativity have less
influence in the networks with smaller order.

Due to the probabilistic character of the sampling, we choose
to extract 3 samples each time. This produces a data set
with three times of the total number of all of the graphs
that have enough nodes to be include in each of the five
order sets. The sampling algorithm is also robust against
results containing too many isolated nodes or too few edges.
The resulting graph orders are within %10 of the nominal
order.

Data Feature Extraction
For each of the five sets of sampled graphs we extract the 20
topological features described in the previous section. The
full resulting datasets by either dividing by features or divid-
ing by order are available publicly at [18]. The software for
feature extraction task and data cleansing are made avail-
able as open- source at [19] and [20].

Data Standardization
Standardization of datasets is a common requirement for
many machine learning estimators. If a feature has a vari-
ance that is orders of magnitude larger that others, it might
dominate the objective function and make the estimator un-
able to learn from other features correctly [17].

In this work, after separating 20% of the data for testing
set, we perform three parallel approaches. The first leaves
the data without any standardization (‘none’). This allows
to check the validity of any standardization in the many
classifiers, and whether the use of the non-standardized data
is sufficient.

In the first standardization method (‘gauss’) we ignore the
shape of the distribution and just transform the data to cen-
ter it by removing the mean value of each feature. We then
scale it by dividing non-constant features by their standard
deviation.

The second standardization method (‘xmin’) is given by scal-
ing the features to lie between a given minimum and maxi-
mum value, often between zero and one. The motivation to
use this scaling includes the robustness to very small stan-
dard deviations of features and the preservation of zero en-
tries in sparse data.

In the Figs. 2 and 3 we can see the correlation plots for
the sets with order 100, 300, 1000, and 2000, for their best
scoring features (as we see in the following section). In gen-
eral, the standardization preserves the distribution of the
data, Its effect on the classifiers is discussed in the following
section.

4. CLASSIFICATION
Adaboost
We perform one vs. all classification for each of the four
class labels using Adaboost with decision stumps. In
this case, for each of the classes, we separately calculate their
binary classification, by setting all the other three classes as



Figure 2: In the left side we see correlation plots for Centrality, with no standardization, for the for best features in the sets:

with order 100 (top left) and with order 2000 (bottom left). In the right side, we see the correlation plots for Clustering and

with xmin standardization for the sets: with order 100 (top right) and with order 2000 (bottom right). High definition versions

of these plots and additional plots for each top features for every order sets or standardization are available online at [18].



Figure 3: In the left side we see correlation plots for Assortativity, with no standardization, for the for best features in the

sets: with order 300 (top left) and with order 1000 (bottom left). In the right side, we see the correlation plots for Clustering

and with xmin standardization for the sets: with order 300 (top right) and with order 1000 (bottom right). High definition

versions of these plots and additional plots for each top features for every order sets or standardization are available online at

[18].



Figure 4: Correlation plots for Centrality for set order 1000,

without outliers, xmin standardization, for the best scoring

features for this set and xmin normalization.

belonging to the opposite label. For large networks (orders
of 1000 and 2000), we obtain 100% testing accuracy for any
of the four types of networks (bio, tech, info, and social)
for any of the three types of standardization (xmin, gauss,
none). In addition, all of the other sets show accuracy of at
least 92%.

Logistic Regression
To be able to identify the best features for network classi-
fication, we use pairwise logistic regression classification.
The features selected more often are selected as good fea-
tures. For each of five sampling sets and for each of the
standardization methods, we were able to select which of
the 19 features1 that are more relevant for the classification.
We first analyze the sets with outliers and then without
outliers2. When including outliers, we achieve an average of
than 95% testing accuracy for the large sets (order 1000 and
2000), independently of the sets being standardized or not.
An example of correlation plot for sets without outliers with
xmin standardization is shown, in the Fig. 4.

The worst performance was for the sets with order 300, with-
out outliers and without standardization, achieving average
of 73% testing set accuracy. Followed by the smallest sets,
order 100, achieving an average of 88−90% accuracy for any
standardization/outlier case. The better performance of the
100 set over the 300 set can explained by the fact that many
biological networks (metabolic type) and ego-centered net-
works (retweet) contain in general in the order of 100 nodes,
only being present in the first sampling set. The worse per-
formance of these sets among the larger sets can be explained
by the fact that most of the networks are in fact larger than
500 nodes.

The best features for each case together with their perfor-
mance over the testing sets can be seen in the table 4. The
complete result can be seen in the table 5 (including outliers)
and 5 (without outliers). Although the top scoring features
slightly change depending on the order of the graph, we find
that the most important features for classification are clus-
tering, pagerank, centrality, transitivity, number of
cliques, and assortativity. In addition, number of tri-

1Since we divided our data a by five sampling orders, we do
not use order as a classification feature.
2Outliers were removed case by case, by searching for very
extreme points.

Figure 5: (top) Optimal number of features for logistic re-

gression classification, calculated from k-fold cross-validation.

(bottom) An example of the separation surface for logistic re-

gression for the set order 2000, one-vs-one.

angles and square clustering tend to be a good classi-
fication feature for smaller networks, while assortativity
and transitivity tend to be more relevant for larger net-
works. We also see that the optimal number of features in
this classification is 5 (Fig. 5).

Support Vector Machine
Using one vs. one SVM classification, we report simi-
lar results from logistic regression for the best classification
features. However, the performance of the former classifier
seems to be slightly worse: we only find testing set accura-
cies above 80% for larger sets, as we can see in the table 4.
The best performance results were for the Gaussian stan-
dardization. Sets without outliers did not performed better
than 70% accuracy for non-standardized graphs and around
80% for Gaussian standardized graphs. This shows that the
outliers might carry important characteristics of these net-
works, but it can also be due to the great weight that theses
points add to the learning task. This results are corrobo-
rated when we report 99-100% testing set accuracy for set
order 2000, with zeros and with outliers. Examples of the
separation surface for several classifiers for a set with outliers
is shown in the Fig. 6.

Unsupervised Learning
As a complementary analysis we attempt to classify our net-
works using the k-means algorithms for 4 cluster. The re-
sults failed to present meaningful classification, with very
few examples that partially worked. In the Fig. 7 we see
one of them, for the set of order 100.



Figure 7: K-means clustering for 4 classes, in terms of three features: number of cliques, clustering, and square clustering, for

the xmin standardization (left). Ground plot (no classifier, just the date). We see that the cluster were close but not completely

right. All the other plots are available at [18].

Stand. Set O? Best Features Acc.

xmin 100 F NCl, Clu, Scl, Pag, Cen 0.9
xmin 300 T Den, Scl, Com, Pag 0.92
xmin 300 F Ass, Clu, Pag, Cen 0.85
xmin 500 T Tra, NTr, Scl, Pag 0.97
xmin 500 F Tra, Clu, Den, Scl, Pag, Cen 0.92
xmin 1000 T Cnu, Cen 0.98
xmin 1000 F Ass, Clu, Pag, Cen 0.93
xmin 2000 T Cor 0.98
xmin 2000 F NCl, Ass, Tra, Clu, Pag, Cen 0.94

gaus 100 T NCl, Clu, Scl, Pag, Cen 0.86
gaus 100 F NCl, Clu, Scl, Pag, Cen 0.9
gaus 300 T Den, Scl, Com 0.93
gaus 300 F Clu, Den, Pag, Cen 0.84
gaus 500 T Tra, NTr, Scl, Pag 0.99
gaus 500 F Tra, Clu, Scl, Pag, Cen 0.9
gaus 1000 T NCl, Cnu, Cen 1
gaus 1000 F Ass, Clu, Pag, Cen 0.93
gaus 2000 F NCl, Ass, Tra, Clu, Pag, Cen 0.98

none 100 T NCl, Clu, Scl, Pag, Cen 0.94
none 100 F NCl, Clu, Scl, Pag, Cen 0.86
none 300 T Den, Scl, Com, Pag 0.89
none 300 F Clu, Pag, Cen 0.91
none 500 T Tra, NTr, Pag 0.78
none 500 F Tra, Clu, Den, Scl, Pag, Cen 0.98
none 1000 T Cnu, Cen 0.98
none 1000 F Ass, Clu, Pag, Cen 0.8
none 2000 T Cor, Cen 0.98
none 2000 F NCl, Ass, Tra, Clu, Pag, Cen 0.92

Table 1: The features that best scored in logistic regres-

sion, with their respective overall testing accuracy. The first

column is the type of standardization, the second column is

the set order, the third column is T(rue) for sets containing

outliers or F(alse) otherwise, and the last column is the av-

erage testing accuracy. We can see that the most important

features for this classifier are clustering, pagerank, centrality,

transitivity, clique number, and assortativity.

Figure 6: Separation surface for the set order 2000, one-vs-

one:(top) Adaboost (accuracy 0.94), (middle) Naive Bayes

(accuracy 0.93) , and (bottom) SVM (0.95). This also illus-

trates that the separation surface is not linear. Note that the

fourth cluster (biological) is ill represented in this example,

and this is due the fact that most of the biological networks

have less than 2000 nodes.



Set Stand. Best Features Test. Acc.

No outliers, gauss Clu, Cen 0.8
no zeros, set NCl, Pag 0.82
order 2000 Tra, Pag 0.81

With outliers, gauss Cen, Tran 0.93
no zeros, Cen, NCl 0.96
set order Cen, Pag 0.93

1000 Cen, Clus 0.91
With outliers, gauss Cen, Tra 0.94

no zeros, Cen, Clu 0.95
set order Cen, NCl 0.97

2000 Tra, Pag 0.95
With outliers, gauss Cen, Tra 0.91
with zeros, Cen, Clu 0.91
set order Cen, NCl 0.96

1000 Cen, Pag 0.91
With outliers, gauss Cen, Tra 0.96
with zeros, Cen, Clu 0.95
set order Cen, NCli 0.95

2000 Tra, Pag 0.93

Table 2: The features that scored best in the multi-label

one vs. one SVM classification of the networks, with their

respective overall testing accuracy. We see that the most

important features for this classifier are clustering, pagerank,

centrality, transitivity, and number of cliques.

5. CONCLUSIONS
In this work we performed several learning analysis of an
extensive set of real world complex networks. We outline
some of the conclusions:

• Best classification features: The top three fea-
tures are clustering, pagerank, and centrality. They
are followed by transitivity, assortativity, and number
of cliques.

• Validity of the data sampling: The sampling method
developed here seems to have a good performance over-
all, only underestimating some of the properties for the
small networks. This resulted in the set of order 300
having the wort performance between the five sets.

• Validity of the data standardizing: The standard-
izing sets performed similar than the xmin and gauss
sets for logistic regression. For the SVM classifier, the
standardized set performed better.

• Validity of the classifiers: We reported testing set
accuracies larger than 90% for the supervised classi-
fiers, for most of the data set configurations. Sets with
outliers tend to report better accuracies. The unsu-
pervised learning was not very successful and further
studies are needed.

• Some comments on the features: Most of the net-
works are sparse, while social and technological tend
to be general denser. These two networks also tend to
present higher transitivity. However, large standard
deviations shows the heterogeneity of the networks for
this feature. For most networks, we observe most of
the nodes having either very low or very high eccen-
tricities. In terms of diameters, the order of magni-
tude of the diameter is the same for the most domains,

with exception of social and biological networks. The
same observation does not hold for the radius, which
is roughly similar for most domains. Information net-
works seems to show a radius of hundreds of hops,
instead of tens for the other domains. For most net-
works, the betweenness are homogeneous, following a
normal-like distribution. The presence of only a few
central links supports the hypothesis that the networks
are modular. Some results available from the literature
are exposed in the tables in final of this paper.
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Stand. Set Ord Siz Ass Tra Deg Cor NTr NCl Cnu Clu Eco Ecc Dia Bet Den Rad Scl Com Pag Cen

xmin 100 0.3 0.5 0.8 0.4 0.4 0.0 0.6 1.0 0.5 1.0 0.0 0.2 0.2 0.2 0.8 0.2 1.0 0.2 1.0 1.0
xmin 300 0.4 0.6 0.1 0.9 0.8 0.7 0.0 0.8 0.5 0.9 0.0 0.3 0.3 0.4 1.0 0.1 1.0 1.0 0.9 0.8
xmin 500 0.5 0.2 0.2 1.0 0.6 0.1 1.0 0.8 0.4 0.3 0.0 0.5 0.3 0.5 0.6 0.1 1.0 0.4 1.0 0.8
xmin 1000 0.4 0.1 0.1 0.2 0.6 0.8 0.2 0.9 1.0 0.1 0.0 0.4 0.2 0.2 0.4 0.1 0.1 0.6 0.7 1.0
xmin 2000 0.1 0.0 0.0 0.2 0.4 0.9 0.0 0.3 0.4 0.0 0.0 0.2 0.2 0.0 0.6 0.0 0.0 0.2 0.3 1.0
gaus 100 0.4 0.6 0.8 0.3 0.4 0.0 0.7 1.0 0.5 1.0 0.0 0.3 0.1 0.3 0.7 0.2 1.0 0.1 1.0 1.0
gaus 300 0.5 0.5 0.1 0.8 0.8 0.7 0.1 0.7 0.4 0.9 0.0 0.2 0.4 0.3 1.0 0.1 1.0 1.0 0.9 0.9
gaus 500 0.5 0.2 0.2 1.0 0.6 0.1 1.0 0.8 0.4 0.3 0.0 0.5 0.2 0.5 0.6 0.1 1.0 0.4 1.0 0.8
gaus 1000 0.4 0.2 0.1 0.2 0.6 0.8 0.3 0.9 1.0 0.1 0.0 0.4 0.2 0.2 0.3 0.1 0.1 0.7 0.7 1.0
gaus 2000 0.1 0.0 0.0 0.2 0.4 0.9 0.0 0.2 0.5 0.0 0.0 0.2 0.2 0.1 0.6 0.0 0.0 0.2 0.4 1.0
none 100 0.3 0.6 0.9 0.4 0.5 0.0 0.6 1.0 0.4 1.0 0.0 0.3 0.1 0.2 0.8 0.2 1.0 0.1 1.0 1.0
none 300 0.5 0.5 0.2 0.8 0.8 0.7 0.1 0.8 0.4 0.9 0.0 0.2 0.3 0.4 1.0 0.1 1.0 1.0 0.9 0.9
none 500 0.4 0.2 0.3 1.0 0.6 0.1 1.0 0.8 0.4 0.3 0.0 0.5 0.3 0.5 0.6 0.1 1.0 0.5 1.0 0.7
none 1000 0.5 0.1 0.1 0.2 0.6 0.7 0.8 0.8 1.0 0.1 0.0 0.3 0.2 0.2 0.4 0.1 0.1 0.6 0.6 1.0
none 2000 0.1 0.0 0.0 0.2 0.4 0.9 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.0 0.6 0.1 0.0 0.3 0.4 1.0

Table 3: Feature analysis for multilabel logistic regression, one vs. all, for each order set number and standardization type,

including outliers. The bold values are the best features.

Stand. Set Ord Siz Ass Tra Deg Cor NTr NCl Cnu Clu Eco Ecc Dia Bet Den Rad Scl Com Pag Cen

xmin 100 0.3 0.7 0.8 0.4 0.4 0.1 0.6 1.0 0.5 1.0 0.0 0.3 0.1 0.2 0.8 0.2 1.0 0.6 1.0 1.0
xmin 300 0.3 0.8 1.0 0.6 0.2 0.1 0.0 0.7 0.5 1.0 0.0 0.4 0.2 0.5 0.9 0.5 0.1 0.0 1.0 1.0
xmin 500 0.2 1.0 0.7 1.0 0.3 0.0 0.7 0.8 0.8 1.0 0.0 0.1 0.1 0.1 0.9 0.3 1.0 0.0 1.0 1.0
xmin 1000 0.6 0.4 1.0 0.8 0.2 0.3 0.3 0.6 0.6 1.0 0.0 0.5 0.6 0.6 0.1 0.2 0.5 0.0 1.0 1.0
xmin 2000 0.2 1.0 1.0 1.0 0.5 0.6 0.4 0.7 0.0 1.0 0.0 0.4 0.3 0.3 0.7 0.1 0.8 0.0 1.0 1.0

gaus 100 0.3 0.7 0.7 0.3 0.3 0.1 0.5 1.0 0.4 1.0 0.0 0.3 0.1 0.2 0.8 0.3 1.0 0.5 1.0 1.0
gaus 300 0.2 0.9 1.0 0.6 0.2 0.0 0.0 0.8 0.4 1.0 0.0 0.4 0.2 0.4 0.9 0.5 0.2 0.0 1.0 1.0
gaus 500 0.3 1.0 0.7 1.0 0.3 0.0 0.0 080 0.7 1.0 0.0 0.1 0.1 0.1 0.9 0.3 1.0 0.0 1.0 1.0
gaus 1000 0.6 0.5 1.0 0.7 0.2 0.3 0.2 0.8 0.6 1.0 0.0 0.5 0.6 0.5 0.1 0.2 0.5 0.0 1.0 1.0
gaus 2000 0.3 1.0 1.0 1.0 0.5 0.6 0.3 0.8 0.0 1.0 0.0 0.5 0.3 0.2 0.7 0.0 0.8 0.0 1.0 1.0

none 100 0.3 0.6 0.8 0.3 0.4 0.0 0.5 1.0 0.5 1.0 0.0 0.2 0.1 0.2 0.8 0.2 1.0 0.5 1.0 1.0
none 300 0.3 0.9 1.0 0.6 0.2 0.1 0.0 0.5 0.4 1.0 0.0 0.3 0.2 0.5 0.9 0.5 0.3 0.0 1.0 1.0
none 500 0.2 1.0 0.7 1.0 0.3 0.0 0.0 0.8 0.7 1.0 0.0 0.1 0.1 0.1 0.9 0.3 1.0 0.0 1.0 1.0
none 1000 0.7 0.5 1.0 0.8 0.1 0.3 0.2 0.8 0.7 1.0 0.0 0.6 0.6 0.5 0.1 0.2 0.4 0.0 1.0 1.0
none 2000 0.3 1.0 1.0 1.0 0.5 0.6 0.4 0.9 0.0 1.0 0.0 0.4 0.2 0.3 0.7 0.0 0.9 0.0 1.0 1.0

Table 4: Feature analysis for multilabel logistic regression, one vs. all, for each order set number and standardization type,

without outliers. The bold values are the best features.


